Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Seal Cross-Section Design Automation and Optimization Using Isight

2016-04-05
2016-01-1397
New seal cross-section development is a very tedious and time consuming process if conventional analysis methods are used, as it is very difficult to predict the dimensions of the seal that will satisfy the sealing performance targets. In this study, a generic cross-section is defined and the design constraints are specified. Isight then runs the FEA model, utilizing a custom python script for post-processing. Isight then updates the dimensions of the seal and continues running analyses. Isight was run using two different design exploration techniques. The first was a design of experiments (DOE) to discover how the seal’s response varies with its dimensions. Then, after the analyst examined the results, Isight was run in optimization mode focusing on feasible design areas as determined from the DOE. Thus, after the initial model setup, the user can run the analyses in the background and only needs to interact with the program after Isight has determined a list of feasible designs.
Technical Paper

Fast and Stable Quasi-Static Bending Simulations in LS-DYNA: Identification of Optimal Finite Element Model Parameters

2016-04-05
2016-01-1392
The quality of material model input files for finite element analysis (FEA) is a fundamental factor governing the fidelity and accuracy of simulations at a sub-system or a vehicle level, dictating an investment of due diligence in developing and validating the material models. Several material models conventionally employed for FEA typically allow accounting for only uniaxial tensile behavior of the material; however, the models may be required to predict component-level response in a complex loading scenario. Therefore in developing LSDYNA material input files for such models, it becomes critical to validate their performance in alternative loading scenarios. For out-ofplane loading, typically a three or four-point bending load-case is used for validation. Simulating three point bending (TPB), particularly in the quasi-static regime, requires detailed representation of the moving pin impacting the specimen, and sliding of the specimen on the stationary pins.
Technical Paper

Directional Mahalanobis Distance and Parameter Sensitivities

2016-04-05
2016-01-0289
Mahalanobis Distance (MD) is gaining momentum in many fields where classification, statistical pattern recognition, and forecasting are primary focus. It is a multivariate method and considers correlation relationships among parameters for computing generalized distance measure to separate groups or populations. MD is a useful statistic in multivariate analysis to test that an observed random sample is from a multivariate normal distribution. This capability alone enables engineers to determine if an observed sample is an outlier (defect) that falls outside the constructed (good) multivariate normal distribution. In Mahalanobis-Taguchi System (MTS), MD is suitably scaled and used as a measure of severity in abnormality assessment. It is obvious that computed MD depends on values of parameters observed on a random sample. All parameters may not equally impact MD. MD could be highly sensitive with respect to some parameters and less sensitive to some other parameters.
Technical Paper

Fixed-Point Model Development Assistant Tool

2016-04-05
2016-01-0018
Development of the software using fixed-point arithmetic is known to be tedious and error-prone. Difficulty of selecting the correct data type can outwear software developers. The common retreats often sought after include manual calculation of the approximate ranges, exhaustive simulations with extreme input values and conservative development approach by using excessive word length. The first two retreats - manual calculation and exhaustive simulations - increase the software development time, and the third retreat - conservative development - leads to the excessive memory (RAM and ROM) utilization by the software. The model-based development environment such as the Simulink has graphical nature to the software with flow of data defined by connecting signal lines. The model-based software therefore gives an opportunity to trace signal flow in the software. Input-tracing method is presented to trace the flow of the input signals of the user selected block in the software model.
Technical Paper

Acoustic Performance Evaluation of Hood Liner Constructions

2015-06-15
2015-01-2206
In automotive noise control, the hood liner is an important acoustic part for mitigating engine noise. The random incidence absorption coefficient is used to quantify the component level acoustic performance. Generally, air gaps, type of substrate materials, density of the substrate materials and Air Flow Resistivity (AFR) of the cover scrim are the dominant control factors in the sound absorption performance. This paper describes a systematic experimental investigation of how these control factors affect flat sample performance. The first stage of this study is full factorial measurement based on current available solutions from sound absorber suppliers. The acoustic absorption of different hood liner constructions, with variations in materials, density, air gaps, and scrims was measured.
Journal Article

Automatic Transmission Gear Ratio Optimization and Monte Carlo Simulation of Fuel Consumption with Parasitic Loss Uncertainty

2015-04-14
2015-01-1145
This investigation utilizes energy analysis and statistical methods to optimize step gear automatic transmissions gear selection for fuel consumption. A full factorial matrix of simulations using energy analysis was performed to determine the optimal number of gears and gear ratios that provide the best fuel consumption performance for a particular vehicle - engine application. The full factorial matrix setup as a design of experiment (DOE) was applied to five vehicle applications, each with two engines to examine the potential differences that variations in road load and engine characteristics might have on optimal transmission gearing selection. The transmission gearing options considered in the DOE were number of gears, launch gear ratio and top gear ratio. Final drive ratio was also included due to its global influence on vehicle performance and powertrain operating speeds and torque.
Journal Article

Transmission Dynamic Modeling and Parametric NVH Analysis

2015-04-14
2015-01-1147
A new approach for modeling and analysis of a transmission and driveline system is proposed. By considering the stiffness, damping and inertias, model equations based on lumped parameters can be created through standard Lagrangian Mechanics techniques. A sensitivity analysis method has then been proposed on the eigenspace of the system characteristic equation to reveal the dynamic nature of a transmission and driveline system. The relative sensitivity calculated can clearly show the vibration modes of the system and the key contributing components. The usefulness of the method is demonstrated through the GM 6-speed RWD transmission by analyzing the dynamic nature of the driveline system. The results can provide a fundamental explanation of the vibration issue experienced and the solution adopted for the transmission.
Journal Article

FEA Development of Spot Weld Modeling with Fracture Forming Limit Diagram(FFLD) Failure Criteria and Its Application to Vehicle Body Structure

2015-04-14
2015-01-1316
Spot weld separation in vehicle development stage is one of the critical phenomena in structural analyses regarding quasi-static test condition, like roof strength or seat/belt pull. It directly reduces structural performance by losing connected load path and occasionally introduces tearing on surrounding sheet metals. Traditionally many efforts have been attempted to capture parent metal ductile fracture, but not applied to spot weld separations in automotive FEA simulations. [1,2,3] This paper introduces how to develop FFLD failure criteria from a series of parametric study on ultra high strength sheet steel and deals with failure criteria around spot weld and parent metal. Once the fracture strains for sheet steels are determined, those developed values were applied to traditional spot weld coupon FEA simulations and tests. Full vehicle level roof strength FEA simulations on a typical automotive body structure were performed and verified to the physical tests.
Technical Paper

Optimization of the Customer Experience for Routine Handling Performance

2015-04-14
2015-01-1588
Rapidly increasing customer, financial, and regulatory pressures are creating clear changes in the calculus of vehicle design for modern automotive OEM's (Original Equipment Manufacturers). Customers continue to demand shorter product lifecycles; the increasingly competitive global market exerts pressure to reduce costs in all stages of development; and environmental regulations drive a continuous need to reduce mass and energy consumption. OEM's must confront these challenges while continuing to satisfy the customer. The foundation to meeting these challenges includes: (1) Continued development of objective metrics to quantify performance; (2) Frontloading vehicle design content and performance synthesis; (3) A precise understanding of the customer and their performance preferences under diverse usage conditions. These combined elements will enable products better optimized amongst competing (and often contradictory) imperatives.
Technical Paper

Optimization of Front Bumper Beam for RCAR Performance using Design of Six Sigma and Finite Element Analysis

2015-04-14
2015-01-1493
Research Council for Automotive Repairs (RCAR) has developed a bumper test at 10 km/h to assess the damageability and repairing cost during a low speed collusion. For minimum damage and minimum repairing cost during low speed collusion it is necessary to design a bumper beam which provides structural stiffness and reduced deflection. Often it is challenging to design a front bumper beam to meet all safety requirements including, RCAR, high speed offset barrier and pedestrian protection, since these requirements are not necessarily compatible with each other. Design changes in rails and packaging constraints add to this challenge. In this study, design of six sigma (DFSS) and finite element analysis are used to study the parameters that affect the stiffness and deflection of the front bumper beam.
Technical Paper

Optimization of Diesel Oxidation Catalyst (DOC) on Passenger Cars to Improve Emission Robustness

2015-04-14
2015-01-1013
Emission compliance at the production level has been a challenge for vehicle manufacturers. Diesel oxidation catalyst (DOC) plays a very important role in controlling the emissions for the diesel vehicles. Vehicle manufacturers tend to ‘over design’ the diesel oxidation catalyst to ‘absorb’ the production variations which seems an easier and faster solution. However this approach increases the DOC cost phenomenally which impacts the overall vehicle cost. The main objective of this paper is to address the high variation in CO tail pipe emissions which were observed on a diesel passenger car during development. This variation was posing a challenge in consistently meeting the internal product requirement/specification.
Technical Paper

Minimum Cycle Requirement for SAE J2562

2014-04-01
2014-01-0073
SAE J2562 defines the background, apparatus and the directions for modifying the Scaled Base Load Sequence for a given a wheel rated load for a wheel design. This practice has been conducted on multiple wheel designs and over one hundred wheel specimens. All of the wheels were tested to fracture. Concurrently, some of the wheel designs were found to be unserviceable in prior or subsequent proving grounds on-vehicle testing. The remainder of the wheel designs have sufficient fatigue strength to sustain the intended service for the life of the vehicle. This is termed serviceable. Using the empirical data with industry accepted statistics a minimum requirement can be projected, below which a wheel design will likely have samples unserviceable in its intended service. The projections of serviceability result in a recommendation of a minimum cycle requirement for SAE J2562 Ballasted Passenger Vehicle Load Sequence.
Technical Paper

AUTOSAR Software Platform Adoption: Systems Engineering Strategies

2014-04-01
2014-01-0289
AUTOSAR(AUTomotive Open System ARchitecture) establishes an industry standard for OEMs and the supply chain to manage growing complexity to the automotive electronics domain. Increased focus on software based features will prove to be a key differentiator between vehicle platforms. AUTOSAR serves to standardize automotive serial data communication protocols, interaction with respect to hardware peripherals within an ECU and allow ECU implementer to focus on development of unique customer focused features that distinguish product offerings. Adoption strategy and impact assessment associated with leveraging AUTOSAR for an E/E Architecture and the potential challenges that need to be considered will be described in this publication. This publication will also illustrate development strategies that need to be considered w.r.t deploying AUTOSAR like data exchange, consistency to BSW software implementation, MCAL drivers etc.
Technical Paper

Cadillac ATS “Loads Management Striker Cap” Development

2014-04-01
2014-01-0928
The automotive industry is under great pressure to reduce vehicle mass for both cost and fuel economy gains. A significant contributor to body and suspension structure mass is peak vertical loads, primarily entering the body structure through the jounce bumper to body interface. This paper focuses on the successful development of “Loads Management Striker Caps” for the 2013 Cadillac ATS front and rear suspension. Component design and development of the striker caps was executed using explicit finite element analysis tools. Multi-body dynamics vehicle models were used to set component requirements and confirm striker cap performance for the vehicle during peak vertical events. The “Loads Management Striker Caps” ultimately reduced peak strut/shock tower loads by 40% in the front suspension and 25% in the rear suspension. This resulted in significant body and chassis mass savings, contributing to the Cadillac ATS's class leading curb weight.
Journal Article

Lightweight Acoustic System Performance Target Setting Process

2013-05-13
2013-01-1982
In the vehicle development process, one important step is to set a component performance target from the vehicle level performance. Conventional barrier-decoupler dash mats and floor trim underlayment systems typically provide sound transmission loss (STL) with minimal absorption. Thus the performance of such components can be relatively easily specified as either STL or Insertion Loss. Lightweight dissipative or multi-layered acoustic materials provide both STL and significant absorption. The net performance is a combination of two parameters instead of one. The target for such components needs to account for this combined effect, however different suppliers use unique formulations and manufacturing methods, so it is difficult and time consuming to judge one formulation against another. In this paper, a unique process is presented to set a component target as a combined effect of STL and absorption.
Technical Paper

Investigation and Correction of Sheet Metal Distortion in Draw Operation

2010-04-12
2010-01-0985
Surface distortions are frequently introduced into the Class “A” surfaces during various sheet metal forming operations such as drawing, trimming and flanging. The origins of those surface distortions have not been well understood. The scope of this research is to investigate the distortion that occurs in draw operation and to find effective and practical corrective methods. Five geometric parameters are first identified to represent a typical depression feature in automobile outer panels. Experimental dies are then designed to reflect various combinations of these five geometric parameters with the assistance of numerical simulations to ensure that the dies can make parts free of major defects like splits and wrinkles. Surface distortions are observed in our stamping experiments and various techniques are used to measure and record the distortions for further mathematical analysis.
X