Refine Your Search

Topic

Author

Search Results

Technical Paper

Making a Regional Belt Drive Rack Electric Power Steering System Global

2017-11-07
2017-36-0188
An actual trend in the automotive industry is to have global products in order to have economy of scale. This paper presents how a Belt Drive Rack EPS developed for the North American market had to be modified in order to be assembled in a Vehicle sold all around the world. Main technical challenges for achieving that goal were generated from different Architectures, whether electrical or mechanical, used in each vehicle, Packaging issues and Regional Requirements. Main features affected are Database Configuration, Electromagnetic Compatibility, Smooth Road Shake mitigation and Pull Compensation.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Journal Article

Health Ready Components-Unlocking the Potential of IVHM

2016-04-05
2016-01-0075
Health Ready Components are essential to unlocking the potential of Integrated Vehicle Health Management (IVHM) as it relates to real-time diagnosis and prognosis in order to achieve lower maintenance costs, greater asset availability, reliability and safety. IVHM results in reduced maintenance costs by providing more accurate fault isolation and repair guidance. IVHM results in greater asset availability, reliability and safety by recommending preventative maintenance and by identifying anomalous behavior indicative of degraded functionality prior to detection of the fault by other detection mechanisms. The cost, complexity and effectiveness of the IVHM system design, deployment and support depend, to a great extent, on the degree to which components and subsystems provide the run-time data needed by IVHM and the design time semantic data to allow IVHM to interpret those messages.
Technical Paper

A Comparison New Car Assessment Program NCAP Requirements and Procedures Around the World

2013-10-07
2013-36-0499
The New Car Assessment Program (NCAP), introduced in 1979 by the U.S. National Highway Traffic Safety Administration, is a vehicle safety rating system that conducts crash test and provides motoring consumers with an assessment of the safety performance of new cars. Similar programs were then developed around the world, initially for Europe (EuroNCAP), Australia (ANCAP), Japan (JNCAP), China (CNCAP) and Korea (KNCAP). NCAP most recently reached Latin America (LatinNCAP) and Southeast Asia (AseanNCAP). Although the roots are similar, many NCAP programs have significant differences on the test procedures and rating schemes. This paper is a comparative analysis of the recent NCAP protocols to highlight the most important technical differences.
Journal Article

Design Verification of Automotive Controller Models

2013-04-08
2013-01-0428
Model-Based Development processes in the automotive industry typically use high-level modeling languages to build the reference models of embedded controllers. One can use formal verification tools to exhaustively verify these design models against their requirements, ensuring high quality models and a reduction in the cost and effort of functional testing. However, there is a gap, in terms of processes and tools, between the informal requirements and the formal specifications required by the verification tools. In this paper, we propose an approach that tries to bridge this gap by (i) identifying the verifiable requirements through a categorization process, (ii) providing a set of templates to easily express the verifiable requirements, and (iii) generating monitors that can be used as specifications in design verification tools. We demonstrate our approach using the Simulink Design Verifier tool for design verification of Simulink/Stateflow models.
Journal Article

Numerical Investigation of Buoyancy-Driven Flow in a Simplified Underhood with Open Enclosure

2013-04-08
2013-01-0842
Numerical results are presented for simulating buoyancy driven flow in a simplified full-scale underhood with open enclosure in automobile. The flow condition is set up in such a way that it mimics the underhood soak condition, when the vehicle is parked in a windbreak with power shut-down after enduring high thermal loads due to performing a sequence of operating conditions, such as highway driving and trailer-grade loads in a hot ambient environment. The experimental underhood geometry, although simplified, consists of the essential components in a typical automobile underhood undergoing the buoyancy-driven flow condition. It includes an open enclosure which has openings to the surrounding environment from the ground and through the top hood gap, an engine block and two exhaust cylinders mounted along the sides of the engine block. The calculated temperature and velocity were compared with the measured data at different locations near and away from the hot exhaust plumes.
Technical Paper

Correlating Measured Combustion Performance with CFD Predicted In-Cylinder Flows for a Spark-Ignition Direct-Injection (SIDI) Engine with Enhanced Charge Motion

2013-04-08
2013-01-1090
A numerical and corresponding experimental study was undertaken to identify the ability to accurately predict combustion performance using our 3-D numerical tools for a direct-injection homogeneous-charge engine. To achieve a significant range of combustion rates, the evaluation was conducted for the engine operating with and without enhanced charge motion. Five charge motion configurations were examined, each having different levels of swirl and tumble flow leading to different turbulence generation and decay characteristics. A detailed CFD analysis provides insight into the in-cylinder flow requirements as well as the accuracy of the submodels. The in-cylinder air-fuel distribution, the mass-averaged swirl and tumble levels along with mean flow and turbulent kinetic energies are calculated throughout the induction and compression processes.
Technical Paper

Accelerated Life Test Methodology for Li-Ion Batteries in Automotive Applications

2013-04-08
2013-01-1548
Determining Li-ion battery life through life modeling is an excellent tool in determining and estimating end-of-life performance. Achieving End-of-Life (EOL) can be challenging since it is difficult to achieve both cycle and calendar life during the same test without years of testing. The plan to correlate testing with the model included three (3) distinct temperature ranges, beginning with the four-Season temperature profile, an aggressive profile with temperatures in the 50 to 55°C range, and using a mid-temperature range (40-45°C) as a final comparison test. A high duty-cycle drive profile was used to cycle all of the batteries as quickly as possible to reach the one potential definition of EOL; significant increases in resistance or capacity fade.
Technical Paper

Fault Tolerance Characteristics of FlexRay Central Devices

2013-04-08
2013-01-1185
FlexRay is a communication system targeted at, among other things, fault tolerant applications. In contrast to some other communication systems, FlexRay systems often contain a central device such as an active star. Due to their ability to isolate portions of the communication system central devices offer opportunities to mitigate certain faults. This paper presents several alternatives for the central device of a FlexRay system, specifically active stars, FlexRay switches, and Central Bus Guardians. The paper analyzes the fault detection, isolation and mitigation mechanisms of each central device based on available documentation and specifications.
Technical Paper

The Simscape Language and Powertrain Applications

2013-04-08
2013-01-0822
Simscape is a physical modeling language developed by Mathworks Inc. The language uses equation statements instead of assignment statements to describe physical systems. The paper focuses on the Simscape language itself instead of using components in the Simscape libraries. The language will be introduced from a perspective different from the Mathworks' Physical Network point of view. Our perspective focuses on two types of variables at the connectors. In additional, internal variables are not separated into through and across variables. The alternative perspective is more general and easier to understand. The paper also illustrates how to develop components in a powertrain library following the proposed new perspective.
Technical Paper

A Statistical Approach for Correlation/Validation of Hot-Soak Terminal Temperature of a Vehicle Cabin CFD Model

2013-04-08
2013-01-0854
A Design for Six Sigma (DFSS) statistical approach is presented in this report to correlate a CFD cabin model with test results. The target is the volume-averaged hot-soak terminal temperature. The objective is to develop an effective correlation process for a simplified CFD cabin model so it can be used in practical design process. It is, however, not the objective in this report to develop the most accurate CFD cabin model that would be too expensive computationally at present to be used in routine design analysis. A 3-D CFD model of a vehicle cabin is the central part of the computer modeling in the development of automotive HVAC systems. Hot-soak terminal temperature is a thermal phenomenon in the cabin of a parked vehicle under the Sun when the overall heat transfer reaches equilibrium. It is often part of the simulation of HVAC system operation.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

Multi-Disciplinary Analyses for Brake Fluid Temperature Evaluation

2013-04-08
2013-01-0635
During braking events, a brake corner sustains high brake torque, generating a large amount of heat in the process. This is most significant during mountain descent events and vehicle race track events. The brake thermal events not only reduce brake friction coefficient and lining life, but also produce elevated brake fluid temperature. Traditionally, brake hardware testing is warranted to evaluate brake fluid temperature for high speed flat track and mountain descent. These tests are costly and time-consuming. A CAE process to predict brake fluid temperature early in the vehicle development process before hardware exists, and to reduce and to replace testing will greatly benefit the vehicle development process. To this end, multiple analyses can be run. The heat transfer coefficients and cooling coefficients were evaluated from relevant CFD analyses.
Journal Article

Idealized Vehicle Crash Test Pulses for Advanced Batteries

2013-04-08
2013-01-0764
This paper reports a study undertaken by the Crash Safety Working Group (CSWG) of the United States Council for Automotive Research (USCAR) to determine generic acceleration pulses for testing and evaluating advanced batteries subjected to inertial loading for application in electric passenger vehicles. These pulses were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used in this study. Crash test data, in terms of acceleration time histories, were collected from various crash modes conducted by the National Highway Traffic Safety Administration (NHTSA) during their New Car Assessment Program (NCAP) and Federal Motor Vehicle Safety Standards (FMVSS) evaluations, and the Insurance Institute for Highway Safety (IIHS).
Technical Paper

Application of Insulation Standards to High Voltage Automotive Applications

2013-04-08
2013-01-1528
Insulation coordination requirements for electrical equipment applications are defined in various standards. The standards are defined for application to stationary mains connected equipment, like IT, power supply or industrial equipment. Protection from an electric shock is considered the primary hazard in these standards. These standards have also been used in the design of various automotive components. IEC 60664-1 is an example of the standard. Automobiles are used across the world, in various environments and in varied usage by the customers. Automobiles need to consider possible additional hazards including electric shock. This paper will provide an overview of how to adapt these standards for automotive application in the design of High Voltage (HV) automotive components, including High Voltage batteries and other HV components connected to the battery. The basic definitions from the standards and the principles are applied for usage in automotive applications.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Journal Article

Development of General Motors' eAssist Powertrain

2012-04-16
2012-01-1039
General Motors' (GM) eAssist powertrain builds upon the knowledge and experience gained from GM's first generation 36Volt Belt-Alternator-Starter (BAS) system introduced on the Saturn VUE Green Line in 2006. Extensive architectural trade studies were conducted to define the eAssist system. The resulting architecture delivers approximately three times the peak electric boost and regenerative braking capability of 36V BAS. Key elements include a water-cooled induction motor/generator (MG), an accessory drive with a coupled dual tensioner system, air cooled power electronics integrated with a 115V lithium-ion battery pack, a direct-injection 2.4 liter 4-cylinder gasoline engine, and a modified 6-speed automatic transmission. The torque-based control system of the eAssist powertrain was designed to be fully integrated with GM's corporate common electrical and controls architectures, enabling the potential for broad application across GM's global product portfolio.
Journal Article

Cabin Heating and Windshield Defrosting for Extended Range Electric, Pure Electric, & Plug-in Hybrid Vehicles

2012-04-16
2012-01-0121
Conventional HVAC systems adjust the position of a temperature door, to achieve a required air temperature discharged into the passenger compartment. Such systems are based upon the fact that a conventional (non-hybrid) vehicle's engine coolant temperature is controlled to a somewhat constant temperature, using an engine thermostat. Coolant flow rate through the cabin heater core varies as the engine speed changes. EREVs (Extended Range Electric Vehicles) & PHEVs (Plug-In Hybrid Electric Vehicles) have two key vehicle requirements: maximize EV (Electric Vehicle) range and maximize fuel economy when the engine is operating. In EV mode, there is no engine heat rejection and battery pack energy is consumed in order to provide heat to the passenger compartment, for windshield defrost/defog and occupant comfort. Energy consumption for cabin heating must be optimized, if one is to optimize vehicle EV range.
Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

2012-04-16
2012-01-0005
To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
Technical Paper

Intersection Management using Vehicular Networks

2012-04-16
2012-01-0292
Driving through intersections can be potentially dangerous because nearly 23 percent of the total automotive related fatalities and almost 1 million injury-causing crashes occur at or within intersections every year [1]. The impact of traffic intersections on trip delays also leads to waste of human and natural resources. Our goal is to increase the safety and throughput of traffic intersections using co-operative driving. In earlier work [2], we have proposed a family of vehicular network protocols, which use Dedicated Short Range Communications (DSRC) and Wireless Access in Vehicular Environment (WAVE) technologies to manage a vehicle's movement at intersections Specifically, we have provided a collision detection algorithm at intersections (CDAI) to avoid potential crashes at or near intersections and improve safety. We have shown that vehicle-to-vehicle (V2V) communications can be used to significantly decrease the trip delays introduced by traffic lights and stop signs.
X