Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Do Drivers Pay Attention during Highway-Based Automated Lane Changes while Operating under Hands-Free Partially Automated Driving?

2024-04-09
2024-01-2396
This study assessed a driver’s ability to safely manage Super Cruise lane changes, both driver commanded (Lane Change on Demand, LCoD) and system triggered Automatic Lane Changes (ALC). Data was gathered under naturalistic conditions on public roads in the Washington, D.C. area with 12 drivers each of whom were provided with a Super Cruise equipped study vehicle over a 10-day exposure period. Drivers were shown how to operate Super Cruise (e.g., system displays, how to activate and disengage, etc.) and provided opportunities to initiate and experience commanded lane changes (LCoD), including how to override the system. Overall, drivers experienced 698 attempted Super Cruise lane changes, 510 Automatic and 188 commanded LCoD lane changes with drivers experiencing an average of 43 Automatic lane changes and 16 LCoD lane changes.
Technical Paper

Method of Improving Slam Durability Fatigue of Vehicle Liftgate Subsystem for Fast-Track Vehicle Development Cycle

2024-01-16
2024-26-0302
With reference to present literature, most OEMs are working on reducing product development time by around ~20%, through seamless integration of digital ecosystem and focusing on dynamic customer needs. The Systems Engineering approach focuses on functions & systems rather than components. In this approach, designers (Computer Aided Design) / analysts (Computer Aided Engineering) need to understand program requirements early to enable seamless integration. This approach also reduces the number of iterative loops between cross functions thereby reducing the development cycle time. In this paper, we have attempted to tackle a common challenge faced by Closures (Liftgate) engineering: meeting slam durability fatigue life while replicating customer normal and abusive closing behavior.
Technical Paper

Static Seat Comfort CAE DOE Variation Study to Understand the Impact of Seating Adjustment and Occupant Posture on Seat Pressure Distribution

2024-01-16
2024-26-0287
The automotive seat has undergone significant advancements in technology due to changing customer demands, levels of autonomy and vehicle regulations. These advancements have presented both opportunities and challenges in creating a pleasant experience for customers by ensuring optimal seat comfort and a joyful human experience. Seats are always being built to accommodate different percentiles of occupant comfort requirements; original equipment manufacturers come up with various seating adjustment features. However, there is considerable variation among each percentile of occupants in how they utilize these features to achieve a comfortable seating position based on their unique preferences and circumstances. Additionally, there are variations in occupant postures due to the ways people have adapted their driving habits or styles when it comes to the way they sit.
Technical Paper

Volume and Pressure Considerations in Human Body Modeling

2020-03-31
2019-22-0020
The initial presence and dynamic formation of internal voids in human body models have been subjects of discussion within the human body modeling community. The relevant physics of the human body are described and the importance of capturing this physics for modeling of internal organ interactions is demonstrated. Basic modeling concepts are discussed along with a proposal of simulation setups designed to verify model behavior in terms of volume and pressure between internal organs.
Technical Paper

Improvements in Simulations of Aortic Loading by Filling in Voids of the Global Human Body Model

2020-03-31
2019-22-0021
Internal organ injuries of the chest are one of the leading causes of deaths in motor vehicle crashes. The issue of initial presence and dynamic formation of voids around the heart and aorta is addressed to improve kinematics, force interaction and injury risk assessment of these organs of the Global Human Body Model. Steps to fill the voids are presented.
Technical Paper

A Study of Hybrid III 5th Percentile Female ATD Chest Accelerometers to Assess Sternum Compression Rate in Chest on Module Driver Out-of-Position Evaluations

2017-03-28
2017-01-1431
Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Journal Article

Engine Diagnostics Using Acoustic Emissions Sensors

2016-04-05
2016-01-0639
Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
Journal Article

Development of the Combustion System for General Motors' High-Efficiency Range Extender Ecotec Small Gas Engine

2015-04-14
2015-01-1272
General Motors has developed an all-new Ecotec 1.5 L range extender engine for use in the 2016 next generation Voltec propulsion system. This engine is part of a new Ecotec family of small displacement gasoline engines introduced in the 2015 model year. Major enhancements over the range extender engine in the current generation Voltec propulsion system include the adoption of direct injection (DI), cooled external exhaust gas recirculation (EGR), and a high 12.5:1 geometric compression ratio (CR). Additional enhancements include the adoption of high-authority phasers on both the intake and exhaust camshafts, and an integrated exhaust manifold (IEM). The combination of DI with cooled EGR has enabled significant thermal efficiency gains over the 1.4 L range extender engine in the current generation Voltec propulsion system at high engine loads.
Technical Paper

Dry Dual Clutch Transmission (DCT) Thermal Model

2015-04-14
2015-01-1144
Dual Clutch Transmissions (DCT) for passenger cars are being developed by OEMs and suppliers. The driving force is the improvement in fuel economy available from manual transmissions together with the comfort of automatic transmissions. A dry clutch system (dDCT) is currently the subject of research, development, and production implementation. One of the key issues in the development of a dDCT is clutch durability. In dry clutches with current linings, above a critical temperature, the friction system starts to suffer permanent damage. In addition, the clutch friction characteristics are a function of the clutch interface temperature. Because a reliable, low-cost temperature sensor is not available for this application, the clutch control engineers rely on a good thermal model to estimate the temperature of the clutches. A thermal model was developed for dry dual clutch transmissions to predict operating temperature of both pressure and center plates during all maneuvers.
Journal Article

Performance Characterization of a Triple Input Clutch, Layshaft Automatic Transmission Using Energy Analysis

2013-12-15
2013-01-9042
This paper details the design and operating attributes of a triple input clutch, layshaft automatic transmission (TCT) with a torque converter in a rear wheel drive passenger vehicle. The objectives of the TCT design are to reduce fuel consumption while increasing acceleration performance through the design of the gearing arrangement, shift actuation system and selection of gear ratios and progression. A systematic comparison of an 8-speed TCT design is made against a hypothetical 8-speed planetary automatic transmission (AT) with torque converter using an energy analysis model based upon empirical data and first principles of vehicle-powertrain systems. It was found that the 8-speed TCT design has the potential to provide an approximate 3% reduction in fuel consumption, a 3% decrease in 0-100 kph time and 30% reduction in energy loss relative to a comparable 8-speed planetary AT with an idealized logarithmic ratio progression.
Journal Article

Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

2013-04-08
2013-01-0216
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Journal Article

Optimal Torque Control for an Electric-Drive Vehicle with In-Wheel Motors: Implementation and Experiments

2013-04-08
2013-01-0674
This paper presents the implementation of an off-line optimized torque vectoring controller on an electric-drive vehicle with four in-wheel motors for driver assistance and handling performance enhancement. The controller takes vehicle longitudinal, lateral, and yaw acceleration signals as feedback using the concept of state-derivative feedback control. The objective of the controller is to optimally control the vehicle motion according to the driver commands. Reference signals are first calculated using a driver command interpreter to accurately interpret what the driver intends for the vehicle motion. The controller then adjusts the braking/throttle outputs based on discrepancy between the vehicle response and the interpreter command.
Journal Article

Effect of Temperature and Aeration on Fluid-Elastomer Compatibility

2013-04-08
2013-01-0652
To investigate the effect of aeration on fluid-elastomer compatibility, 4 types of elastomers were aged in three gear lubes. The four types of elastomers include a production fluorinated rubber (FKM) and production hydrogenated nitrile rubber (HNBR) mixed by the part fabricator, a standard low temperature flexible fluorinated rubber (FKM, ES-4) and a standard ethylene-acrylic copolymer (AEM, ES-7) mixed by SAE J2643 approved rubber mixer. The three gear lubes are Fluid a, Fluid b and Fluid c, where Fluid b is a modified Fluid with additional friction modifier, and Fluid c is friction modified chemistry from a different additive supplier. The aeration effect tests were performed at 125°C for 504 hours. The aerated fluid aging test was performed by introducing air into fluid aging tubes as described in General Motors Company Materials Specification GMW16445, Appendix B, side-by-side with a standard ASTM D471 test.
Journal Article

Numerical Investigation of Buoyancy-Driven Flow in a Simplified Underhood with Open Enclosure

2013-04-08
2013-01-0842
Numerical results are presented for simulating buoyancy driven flow in a simplified full-scale underhood with open enclosure in automobile. The flow condition is set up in such a way that it mimics the underhood soak condition, when the vehicle is parked in a windbreak with power shut-down after enduring high thermal loads due to performing a sequence of operating conditions, such as highway driving and trailer-grade loads in a hot ambient environment. The experimental underhood geometry, although simplified, consists of the essential components in a typical automobile underhood undergoing the buoyancy-driven flow condition. It includes an open enclosure which has openings to the surrounding environment from the ground and through the top hood gap, an engine block and two exhaust cylinders mounted along the sides of the engine block. The calculated temperature and velocity were compared with the measured data at different locations near and away from the hot exhaust plumes.
Journal Article

Study of the Motion of Floating Piston Pin against Pin Bore

2013-04-08
2013-01-1215
One of the major problems that the automotive industry faces is reducing friction to increase efficiency. Researchers have shown that 30% of the fuel energy was consumed to overcome the friction forces between the moving parts of any automobile, Holmberg et al. [1]. The interface of the piston pin and pin bore is one of the areas that generate high friction under severe working conditions of high temperature and lack of lubrication. In this research, experimental investigation and theoretical simulation have been carried out to analyze the motion of the floating pin against pin bore. In the experimental study, the focus was on analyzing the floating pin motion by using a bench test rig to simulate the floating pin motion in an internal combustion engine. A motion data acquisition system was developed to capture and record the pin motion. Thousands of images were recorded and later analyzed by a code written by MATLAB.
Journal Article

Effects of Gasoline and Ethanol Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2013-04-08
2013-01-0893
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries and to buffer the potential organic acids present in an ethanol blended fuel to enhance storage stability. The impact of these inhibitors on spark-ignition engine fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the corrosion inhibitors to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a second market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel, specifically E85 (Ethanol Fuel Blends); and, to show how the variation in the concentrations of the components of the CIs impacts the operation and performance of vehicles, specifically, the effects on intake valve deposit formation.
Technical Paper

Experimental Investigation on the Effects on Performance and Emissions of an Automotive Euro 5 Diesel Engine Fuelled with B30 from RME and HVO

2013-04-08
2013-01-1679
The effects of using blended renewable diesel fuel (30% vol.), obtained from Rapeseed Methyl Ester (RME) and Hydrotreated Vegetable Oil (HVO), in a Euro 5 small displacement passenger car diesel engine have been evaluated in this paper. The hydraulic behavior of the common rail injection system was verified in terms of injected volume and injection rate with both RME and HVO blends fuelling in comparison with commercial diesel. Further, the spray obtained with RME B30 was analyzed and compared with diesel in terms of global shape and penetration, to investigate the potential differences in the air-fuel mixing process. Then, the impact of a biofuel blend usage on engine performance at full load was first analyzed, adopting the same reference calibration for all the tested fuels.
X