Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Method of Improving Slam Durability Fatigue of Vehicle Liftgate Subsystem for Fast-Track Vehicle Development Cycle

2024-01-16
2024-26-0302
With reference to present literature, most OEMs are working on reducing product development time by around ~20%, through seamless integration of digital ecosystem and focusing on dynamic customer needs. The Systems Engineering approach focuses on functions & systems rather than components. In this approach, designers (Computer Aided Design) / analysts (Computer Aided Engineering) need to understand program requirements early to enable seamless integration. This approach also reduces the number of iterative loops between cross functions thereby reducing the development cycle time. In this paper, we have attempted to tackle a common challenge faced by Closures (Liftgate) engineering: meeting slam durability fatigue life while replicating customer normal and abusive closing behavior.
Technical Paper

Application of the Design of Experiments to Study the Sensitivity and Contribution of a Seat Back Bladder Bolster on Occupant Lateral Support Performance

2024-01-16
2024-26-0303
Automotive seat comfort systems provide occupants with a choice to adjust the seat to individual preference, enhancing the customized comfort feel. Seat comfort systems such as massager, lumbar support bladders, seat cushion bolster bladders and seat back bolster bladders are increasingly adopted in automotive seats as customer demand for customizable seats is on the rise. Development of seat comfort systems is mainly driven by Tier 1 suppliers to an automotive original equipment manufacturer (OEM). The Automotive OEM must wait until the final seat prototype is ready with all the seat comfort systems packaged to evaluate the seat comfort performance. Computer Aided Engineering (CAE) Tools like CASIMIR provide detail dummies representing humans with tissues and muscles, allowing occupant seat comfort to be predicted virtually.
Technical Paper

A SOM-Based Trajectory Planning Analysis Method for Intelligent Groups System

2023-12-31
2023-01-7107
Aiming at the problem of weak communication, strong interference, cross-domain, and large-scale environment, it is difficult to achieve efficient decision-making and planning in the collaborative operation of intelligent groups. Based on the SOM algorithm, this paper proposes a dual-selection allocation and distributed vectorized trajectory planning. Form a collaborative planning algorithm that can be updated with high frequency and a rational decision-making mechanism. Provide technical support for collaborative search and detection of intelligent groups. At the same time, based on the principle of minimum consistency, this paper proposes a clock synchronization model under spatial coordination and conducts simulation experiments to verify it. The result proves the efficiency and practicability of the collaborative intelligent decision-making plan proposed in this paper.
Technical Paper

A Kinetic Modeling and Engine Simulation Study on Ozone-Enhanced Ammonia Oxidation

2023-10-31
2023-01-1639
Ammonia has attracted the attention of a growing number of researchers in recent years. However, some properties of ammonia (e.g., low laminar burning velocity, high ignition energy, etc.) inhibit its direct application in engines. Several routes have been proposed to overcome these problems, such as oxygen enrichment, partial fuel cracking strategy and co-combustion with more reactive fuels. Improving the reactivity of ammonia from the oxidizer side is also practical. Ozone is a highly reactive oxidizer which can be easily and rapidly generated through electrical plasma and is an effective promoter applicable for a variety of fuels. The dissociation reaction of ozone increases the concentration of reactive radicals and promotes chain-propagating reactions. Thus, obtaining accurate rate constants of reactions related to ozone is necessary, especially at elevated to high pressure range which is closer to engine-relevant conditions.
Technical Paper

New Low-GWP Refrigerants for Electric Vehicle Heat Pump with Superior Comprehensive Performance

2023-04-11
2023-01-0131
The heat pump with low global warming potential (GWP) refrigerants is imperative for the electric vehicle (EV) to slow down global warming and extend the driving range while meeting passengers' thermal comfort in low ambient temperatures. However, there are no appropriate refrigerants. To provide long-term and environmental-friendly refrigerants in the heat pump for EVs, herein, we reported newly developed low-GWP refrigerant mixtures, i.e., DL3B, whose GWP is lower than 140, the flammability (lower flammability limit and burning velocity), saturation pressure, lubricant miscibility, material compatibility were experimentally tested. A test bench that can investigate the performance of an R410A prototype was built. The drop-in tests of the DL refrigerant were carried out to evaluate the capacities and COPs for both cooling and heating modes in the EV heat pump system.
Technical Paper

Analysis of Energy and Exergy Distribution for Improving Fuel Economy of Marine Low-speed Two-stroke Diesel Engine

2022-03-29
2022-01-0392
Increasingly strict emission regulations and unfavorable economic climate bring severe challenges to the energy conservation of marine low-speed engine. Besides traditional methods, the energy and exergy analysis could acknowledge the losses of fuel from a global perspective to further improve the engine efficiency. Therefore, the energy and exergy analysis is conducted for a marine low-speed engine based on the experimental data. Energy analysis shows the exhaust gas occupies the largest proportion of all fuel energy waste, and it rises with the increment of engine load. The heat transfer consumes the second largest proportion, while it is negatively correlated to engine load. The energy analysis indicates that the most effective way to improve the engine efficiency is to reduce the energy wasted by exhaust gas and heat transfer. However, the latter exergy analysis demonstrates that there are other effective approaches to improve the engine efficiency.
Technical Paper

Nozzle Tip Wetting in GDI Injector and Its Link with Nozzle Spray Hole Length

2022-03-29
2022-01-0498
Fuel film deposited on fuel injector tips used in gasoline direct injection engines, otherwise known as nozzle tip wetting, has been identified as an essential source of particle emissions. Attempts have been made to reduce nozzle tip wetting by the optimization design of nozzle geometry parameters. However, relevant investigations are still limited to emission measurements and corresponding indirect analysis. Due to the lack of related visualization research, the mechanism of nozzle tip wetting formation and its link with nozzle internal flow are still unclear. To clarify the influence of spray hole length on nozzle tip wetting and the underlying mechanisms, the dynamic formation process and the fuel film area evolution of nozzle tip wetting were visualized directly using laser-induced fluorescence technique and photomicrography technique.
Journal Article

An On-Line Path Correction Method Based on 2D Laser Profile Measurement for Gluing Robot

2022-03-08
2022-01-0016
Gluing is an essential fastening step in the field of aircraft assembly except for riveting and bolting. Generally, the robotic programs of gluing are generated in CAM environment. Due to the positioning errors and deformation of the workpiece to be glued in the fixture, the nominal pose and the actual pose of the workpiece are no longer consistent with each other. The Robot trajectory of dispensing glue is adjusted manually according to the actual pose of the workpiece by robot teaching. In this paper, an on-line gluing path correction method is developed by 2D laser profile measurement. A pose calibration method for 2D laser profiler integrated into a gluing robot by measuring a fixed center point of a standard ball is proposed to identify the position and orientation of the laser sensor, which enables the accurate transforming coordinates between the robot frame and the sensor frame.
Technical Paper

Research of the High Altitude Control Strategy of the Piston Aero-engine Using Two-stage Turbocharger Coupled with single Supercharging System

2019-12-19
2019-01-2211
Aiming at the high altitude operation problems for piston-type aero-engines and to improve the practical ceiling and high altitude dynamic performance, this thesis analyzes a controllable three-stage composite supercharging system, using a two-stage turbocharger coupled supercharger method. The GT-Power simulation model of a four-cylinder boxer engine was established, and the control strategy of variable flight height was obtained. The simulation research of engine performance from 0 to 20,000 meters above sea level has been carried out, which shows that the engine power is at the same level as the plain condition, and it could still maintain 85.28 percent of power even at the height of 20,000 meters, which meets the flight requirements of the aircraft.
Technical Paper

Effect of Injection Pressure on Nozzle Internal Flow and Jet Breakup under Sub-Cooled and Flash Boiling Test Conditions

2019-04-02
2019-01-0286
Injection pressure plays a vital role in spray break-up and atomization. High spray injection pressure is usually adopted to optimize the spray atomization in gasoline direct injection fuel system. However, higher injection pressure also leads to engine emission problem related to wall wetting. To solve this problem, researchers are trying to use flash boiling method to control the spray atomization process under lower injection test conditions. However, the effect of injection pressure on the spray atomization under flash boiling test condition has not been adequately investigated yet. In this study, quantitative study of internal flow and near nozzle spray breakup were carried out based on a two-dimensional transparent nozzle via microscopic imaging and phase Doppler interferometery. N-hexane was chosen as test fluid with different injection pressure conditions. Fuel temperature varied from 112°C to 148°C, which covered a wide range of superheated conditions.
Technical Paper

Heat Transfer Characteristics of Gas Cooler in a CO2 Automobile Heat Pump System

2019-04-02
2019-01-0912
An automobile heat pump system with conventional refrigerant (HFC-134a or HFO-1234yf) suffers significantly diminishment of heating capacity and system efficiency as the ambient temperature decreases. Natural refrigerant CO2 (GWP = 1) is considered as a promising alternative to HFC-134a in automobile air conditioning (MAC) applications with environmentally friendly advantage. In addition, CO2 automobile heat pump system is a promising heat pump technology for EVs with great heating advantages in a cold climate. This study aims to investigate the supercritical heat transfer characteristics of a compact micro-channel gas cooler applied in an automobile CO2 heat pump system. A simulation model of automobile gas cooler was developed by using segment-by-segment method, and validated by experimental results from Series Gas cooler (SGC) and One Gas cooler (OGC) CO2 heat pump systems. The error of heating capacity between calculated results and experimental results was less than 7%.
Technical Paper

A High Reliable Automated Percussive Riveting System for Aircraft Assembly

2019-03-19
2019-01-1335
Percussive riveting is a widely used way of fastening in the field of aircraft assembly, which used to be done manually. Nowadays, replacing the traditional percussive riveting with automated percussive riveting becomes a trend worldwide, which improves the quality of riveting significantly. For the automated riveting system used in aircraft assembly, reliability is of great importance, deserving to be deeply researched and fully enhanced. In this paper, a high reliable automated percussive riveting system integrated into a dual robot drilling and riveting system is proposed. The riveting system consists of the hammer part and the bucking bar part. And both parts have been optimized to enhance the reliability. In the hammer side, proximity switches are fully used to detect the state of rivet insertion.
Technical Paper

The Nozzle Flows and Atomization Characteristics of the Two-Component Surrogate Fuel of Diesel from Indirect Coal Liquefaction at Engine Conditions

2018-09-10
2018-01-1691
Recently, all world countries facing the stringent emission regulations have been encouraged to explore the clean fuel. The diesel from indirect coal liquefaction (DICL) has been verified that can reduce the soot and NOx emissions of compression-ignition engine. However, the atomization characteristics of DICL are rarely studied. The aim of this work is to numerically analyze the inner nozzle flow and the atomization characteristics of the DICL and compare the global and local flow characteristics of the DICL with the NO.2 diesel (D2) at engine conditions. A surrogate fuel of the DICL (a mixture of 72.4% n-dodecane and 27.6% methylcyclohexane by mass) was built according to its components to simulate the atomization characteristics of the DICL under the high-temperature and high-pressure environment (non-reacting) by the Large Eddy Simulation (LES).
Journal Article

Multidisciplinary Optimization of Auto-Body Lightweight Design Using Hybrid Metamodeling Technique and Particle Swarm Optimizer

2018-04-03
2018-01-0583
Because of rising complexity during the automotive product development process, the number of disciplines to be concerned has been significantly increased. Multidisciplinary design optimization (MDO) methodology, which provides an opportunity to integrate each discipline and conduct compromise searching process, is investigated and introduced to achieve the best compromise solution for the automotive industry. To make a better application of MDO, the suitable coupling strategy of different disciplines and efficient optimization techniques for automotive design are studied in this article. Firstly, considering the characteristics of automotive load cases which include many shared variables but rare coupling variables, a multilevel MDO coupling strategy based on enhanced collaborative optimization (ECO) is studied to improve the computational efficiency of MDO problems.
Journal Article

Experiment and Simulation Study on Unidirectional Carbon Fiber Composite Component under Dynamic Three-Point Bending Loading

2018-04-03
2018-01-0096
In the current work, unidirectional (UD) carbon fiber composite hatsection component with two different layups are studied under dynamic three-point bending loading. The experiments are performed at various impact velocities, and the effects of impactor velocity and layup on acceleration histories are compared. A macro model is established with LS-DYNA for a more detailed study. The simulation results show that the delamination plays an important role during dynamic three-point bending test. Based on the analysis with a high-speed camera, the sidewall of hatsection shows significant buckling rather than failure. Without considering the delamination, the current material model cannot capture the post-failure phenomenon correctly. The sidewall delamination is modeled by assumption of larger failure strain together with slim parameters, and the simulation results of different impact velocities and layups match the experimental results reasonably well.
Technical Paper

Contrary Effects of Nozzle Length on Spray Primary Breakup under Subcooled and Superheated Conditions

2018-04-03
2018-01-0302
Nozzle length has been proven influencing fuel spray characteristics, and subsequently fuel-air mixing and combustion processes. However, almost all existing related studies are conducted when fuel is subcooled, of which fuel evaporation is extremely weak, especially at the near nozzle region. In addition, injector tip can be heated to very high temperature in SIDI engines, which would trigger flash boiling fuel spray. Therefore, in this study, effect of nozzle length on spray characteristics is investigated under superheated conditions. Three single-hole injectors with different nozzle length were studied. High speed backlit imaging technique was applied to acquire magnified near nozzle spray images based on an optical accessible constant volume chamber. Fuel pressure was maintained at 15 MPa, and n-hexane was chosen as test fuel.
Technical Paper

Optimization-Based Control Strategy for Large Hybrid Electric Vehicles

2018-04-03
2018-01-1030
Electric vehicles (EVs) have become a hot research topic due to the petroleum crisis and air pollution issues, and Hybrid EVs (HEVs) equipped with engines and motors are popular nowadays due to their advantage over Pure EVs. The energy distribution between the engine and the motor is the major task of the control strategy or energy management for HEVs. Rule-based and optimization-based approaches are developed in this area, but not much work has been done for large-size super-capacitor (SC) equipped HEVs, like Hybrid buses. In this paper, a new optimization-based control strategy for a hybrid bus equipped with SCs as the energy regeneration system is presented. Considering the driving patterns of a bus that is of frequent accelerations and decelerations, it is proposed to characterize each time instant by its speed and acceleration, and the energy distribution is optimized based on these two state variables.
Technical Paper

Stress Analysis on the Single-Lap SPR- Adhesive Hybrid Joint

2018-04-03
2018-01-1445
Self-pierced rivet (SPR) and adhesive are two important joining technologies widely used in automobile industry, and they are often used together to form a hybrid joint. SPR and adhesives can often be used in close proximity in a component, leading to an interaction of the two joints. This interaction can influence the corrosion and noise, vibration and harshness (NVH) characteristics of the structure, as well as its strength and durability. In this paper, the stress distribution in an SPR-adhesive hybrid joint is evaluated by using the finite element method, and then compared with that in an adhesive joint. Results indicate that the stress concentrates at the edge of adhesive layer in hybrid joint and adhesive joint and around the rivet in an SPR joint. The effect of rivet is numerically investigated by either removing the rivet from the hybrid joint or changing the position of the rivet on the overlapping area.
Technical Paper

System Characteristics of Direct and Secondary Loop Heat Pump for Electrical Vehicles

2018-04-03
2018-01-0063
The electricity energy consumption for passenger cabin heating can drastically shorten the driving range for electric vehicles in cold climates. Mobile heat pump system is considered as an effective method to improve heating efficiency. This study investigates the system characteristics of mobile heat pump systems for electrical vehicle application. Based on KULI thermal management software, simulation models including HFC-R134a direct heat pump (DHP) and secondary loop heat pump (SLHP) were developed. The secondary loop employed in the SLHP includes a coolant pump, an indoor heater core and a plate heat exchanger, instead of an indoor condenser in the DHP. The use of a secondary loop has advantages to improve air outlet temperature uniformity. The simulation models were verified by measured data obtained from calorimeter experiments. By adopting simulation models, the effects of indoor and outdoor temperatures on system performance and cycle characteristics were discussed.
Technical Paper

Making a Regional Belt Drive Rack Electric Power Steering System Global

2017-11-07
2017-36-0188
An actual trend in the automotive industry is to have global products in order to have economy of scale. This paper presents how a Belt Drive Rack EPS developed for the North American market had to be modified in order to be assembled in a Vehicle sold all around the world. Main technical challenges for achieving that goal were generated from different Architectures, whether electrical or mechanical, used in each vehicle, Packaging issues and Regional Requirements. Main features affected are Database Configuration, Electromagnetic Compatibility, Smooth Road Shake mitigation and Pull Compensation.
X