Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

CFD Analysis of a Centrifugal Pump Controlling a Vehicle Coolant Hydraulic System: a Comparison between MRF and Transient Approaches

2022-03-29
2022-01-0780
Centrifugal pumps are widely used in different thermal fluid systems in automobile industries. Computational fluid dynamics (CFD) analysis of such a thermal fluid system depends on the accurate component modeling of the system components. This paper presents CFD analysis of a centrifugal pump with two different approaches: Transient (moving grid) and the steady state - Multiple Reference Frame (MRF) methods using a commercial CFD solver Simerics MP+®. In addition, flow and pressure drop data obtained using CFD simulations of a vehicle coolant hydraulic system was compared to results from rig test data. The Transient method incorporates the real motion of the pump blades geometry and temporal flow solutions are obtained for instantaneous positions of the blade geometry. In MRF approach, the flow governing equations for the stationary zone are solved in the absolute/inertial reference frame, whereas flow in the moving zone is solved in the relative/non-inertial reference frame.
Journal Article

3D CFD Simulation of Hydraulic Test of an Engine Coolant System

2022-03-29
2022-01-0207
Designing an efficient vehicle coolant system depends on meeting target coolant flow rate to different components with minimum energy consumption by coolant pump. The flow resistance across different components and hoses dictates the flow supplied to that branch which can affect the effectiveness of the coolant system. Hydraulic tests are conducted to understand the system design for component flow delivery and pressure drops and assess necessary changes to better distribute the coolant flow from the pump. The current study highlights the ability of a complete 3D Computational Fluid Dynamics (CFD) simulation to effectively mimic a hydraulic test. The coolant circuit modeled in this simulation consists of an engine water-jacket, a thermostat valve, bypass valve, a coolant pump, a radiator, and flow path to certain auxiliary components like turbo charger, rear transmission oil cooler etc.
Technical Paper

Fan Shroud Design for Low Speed Damageability

2017-03-28
2017-01-1300
An engine cooling system in an automotive vehicle comprises of heat exchangers such as a radiator, charge air cooler and oil coolers along with engine cooling fan. Typical automotive engine-cooling fan assembly includes an electric motor mounted on a shroud that encloses the radiator core. One of main drivers of fan shroud design is Noise, Vibration, and Harshness (NVH) requirements without compromising the main function of airflow for cooling requirements. In addition, there is also a minimum stiffness requirement of fan shroud which is often overlooked in arriving at optimal design of it. Low Speed Damageability (LSD) assessment of an automotive vehicle is about minimizing the cost of repair of vehicle damages in low speed crashes. In low speed accidents, these fan motors are subjected to sudden decelerations which cause fan motors to swing forward thereby damaging the radiator core. So designing fan shroud for low speed damageability is of importance today.
Technical Paper

Studying the Efficiency of Different CAE/CFD Methods for Modeling Complex Air-to-Air Heat Exchangers

2016-04-05
2016-01-0179
In this article, the behavior of a typical air-to-air heat exchanger (intercooler) during the thermal shock test has been recorded during which the heat exchanger is exposed to very high temperature gradients. Different CAE models have been built that have different levels of details and the sensitivity of the results to the details has been studied. Finally a comparison have been made between the results of the CAE/CFD model and the experimental data and the correlation study shows that in spite of being simple, the dual stream is very accurate and correlates pretty well with test data. Including all design details in the CAE model will not necessarily improve the accuracy of the model while adding up to the computational cost.
Journal Article

Thermo-Viscoelastic Model for Shrinkage and Warpage Prediction During Cooling and Solidification of Automotive Blow Molded Parts

2013-04-08
2013-01-1397
Blow moulding is one of the most important polymer processing methods for producing complex thermoplastic automotive parts. Contrary to injection molding, little attention has focused on process control and simulation of blow molding processes. Yet, there are still several problems that affect the overall success of forming these parts. Among them are thermally induced stresses, relevant shrinkage and part warpage deformations caused by inappropriate mold design and/or processing conditions. Tolerance issues are critical in automotive applications and therefore part deformation due to solidification needs to be controlled and optimized accordingly. The accurate prediction tool of part deformation due to solidification, under different cooling conditions in automotive formed parts, is important and highly suited for part designers to help achieve an efficient production.
X