Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Method of Improving Slam Durability Fatigue of Vehicle Liftgate Subsystem for Fast-Track Vehicle Development Cycle

2024-01-16
2024-26-0302
With reference to present literature, most OEMs are working on reducing product development time by around ~20%, through seamless integration of digital ecosystem and focusing on dynamic customer needs. The Systems Engineering approach focuses on functions & systems rather than components. In this approach, designers (Computer Aided Design) / analysts (Computer Aided Engineering) need to understand program requirements early to enable seamless integration. This approach also reduces the number of iterative loops between cross functions thereby reducing the development cycle time. In this paper, we have attempted to tackle a common challenge faced by Closures (Liftgate) engineering: meeting slam durability fatigue life while replicating customer normal and abusive closing behavior.
Technical Paper

Application of the Design of Experiments to Study the Sensitivity and Contribution of a Seat Back Bladder Bolster on Occupant Lateral Support Performance

2024-01-16
2024-26-0303
Automotive seat comfort systems provide occupants with a choice to adjust the seat to individual preference, enhancing the customized comfort feel. Seat comfort systems such as massager, lumbar support bladders, seat cushion bolster bladders and seat back bolster bladders are increasingly adopted in automotive seats as customer demand for customizable seats is on the rise. Development of seat comfort systems is mainly driven by Tier 1 suppliers to an automotive original equipment manufacturer (OEM). The Automotive OEM must wait until the final seat prototype is ready with all the seat comfort systems packaged to evaluate the seat comfort performance. Computer Aided Engineering (CAE) Tools like CASIMIR provide detail dummies representing humans with tissues and muscles, allowing occupant seat comfort to be predicted virtually.
Technical Paper

Making a Regional Belt Drive Rack Electric Power Steering System Global

2017-11-07
2017-36-0188
An actual trend in the automotive industry is to have global products in order to have economy of scale. This paper presents how a Belt Drive Rack EPS developed for the North American market had to be modified in order to be assembled in a Vehicle sold all around the world. Main technical challenges for achieving that goal were generated from different Architectures, whether electrical or mechanical, used in each vehicle, Packaging issues and Regional Requirements. Main features affected are Database Configuration, Electromagnetic Compatibility, Smooth Road Shake mitigation and Pull Compensation.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Journal Article

Engine Diagnostics Using Acoustic Emissions Sensors

2016-04-05
2016-01-0639
Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
Journal Article

Development of the Combustion System for General Motors' High-Efficiency Range Extender Ecotec Small Gas Engine

2015-04-14
2015-01-1272
General Motors has developed an all-new Ecotec 1.5 L range extender engine for use in the 2016 next generation Voltec propulsion system. This engine is part of a new Ecotec family of small displacement gasoline engines introduced in the 2015 model year. Major enhancements over the range extender engine in the current generation Voltec propulsion system include the adoption of direct injection (DI), cooled external exhaust gas recirculation (EGR), and a high 12.5:1 geometric compression ratio (CR). Additional enhancements include the adoption of high-authority phasers on both the intake and exhaust camshafts, and an integrated exhaust manifold (IEM). The combination of DI with cooled EGR has enabled significant thermal efficiency gains over the 1.4 L range extender engine in the current generation Voltec propulsion system at high engine loads.
Technical Paper

Multiphase Flow Simulations of Poppet Valve Noise and Vibration

2015-04-14
2015-01-0666
A deeper understanding of the complex phenomenology associated with the multiphase flow-induced noise and vibration in a dynamic valve is of critical importance to the automotive industry. To this purpose, a two-dimensional axisymmetric numerical model has been developed to simulate the complex processes that are responsible for the noise and vibration in a poppet valve. More specifically, an Eulerian multiphase flow model, a dynamic mesh and a user-defined function are utilized to facilitate the modeling of this complicated two-phase fluid-structure interaction problem. For a two-phase flow through the valve, our simulations showed that the deformation and breakup of gas bubbles in the gap between the poppet and the valve seat generates a vibration that arises primarily from the force imbalance between the spring and the two-phase fluid flow induced forces on the poppet.
Journal Article

Optimal Sensor Configuration and Fault-Tolerant Estimation of Vehicle States

2013-04-08
2013-01-0175
This paper discusses observability of the vehicle states using different sensor configurations as well as fault-tolerant estimation of these states. The optimality of the sensor configurations is assessed through different observability measures and by using a 3-DOF linear vehicle model that incorporates yaw, roll and lateral motions of the vehicle. The most optimal sensor configuration is adopted and an observer is designed to estimate the states of the vehicle handling dynamics. Robustness of the observer against sensor failure is investigated. A fault-tolerant adaptive estimation algorithm is developed to mitigate any possible faults arising from the sensor failures. Effectiveness of the proposed fault-tolerant estimation scheme is demonstrated through numerical analysis and CarSim simulation.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Journal Article

Optimal Torque Control for an Electric-Drive Vehicle with In-Wheel Motors: Implementation and Experiments

2013-04-08
2013-01-0674
This paper presents the implementation of an off-line optimized torque vectoring controller on an electric-drive vehicle with four in-wheel motors for driver assistance and handling performance enhancement. The controller takes vehicle longitudinal, lateral, and yaw acceleration signals as feedback using the concept of state-derivative feedback control. The objective of the controller is to optimally control the vehicle motion according to the driver commands. Reference signals are first calculated using a driver command interpreter to accurately interpret what the driver intends for the vehicle motion. The controller then adjusts the braking/throttle outputs based on discrepancy between the vehicle response and the interpreter command.
Journal Article

Development of an Integrated Control Strategy Consisting of an Advanced Torque Vectoring Controller and a Genetic Fuzzy Active Steering Controller

2013-04-08
2013-01-0681
The optimum driving dynamics can be achieved only when the tire forces on all four wheels and in all three coordinate directions are monitored and controlled precisely. This advanced level of control is possible only when a vehicle is equipped with several active chassis control systems that are networked together in an integrated fashion. To investigate such capabilities, an electric vehicle model has been developed with four direct-drive in-wheel motors and an active steering system. Using this vehicle model, an advanced slip control system, an advanced torque vectoring controller, and a genetic fuzzy active steering controller have been developed previously. This paper investigates whether the integration of these stability control systems enhances the performance of the vehicle in terms of handling, stability, path-following, and longitudinal dynamics.
Journal Article

Effect of Temperature and Aeration on Fluid-Elastomer Compatibility

2013-04-08
2013-01-0652
To investigate the effect of aeration on fluid-elastomer compatibility, 4 types of elastomers were aged in three gear lubes. The four types of elastomers include a production fluorinated rubber (FKM) and production hydrogenated nitrile rubber (HNBR) mixed by the part fabricator, a standard low temperature flexible fluorinated rubber (FKM, ES-4) and a standard ethylene-acrylic copolymer (AEM, ES-7) mixed by SAE J2643 approved rubber mixer. The three gear lubes are Fluid a, Fluid b and Fluid c, where Fluid b is a modified Fluid with additional friction modifier, and Fluid c is friction modified chemistry from a different additive supplier. The aeration effect tests were performed at 125°C for 504 hours. The aerated fluid aging test was performed by introducing air into fluid aging tubes as described in General Motors Company Materials Specification GMW16445, Appendix B, side-by-side with a standard ASTM D471 test.
Journal Article

Development of an Advanced Fuzzy Active Steering Controller and a Novel Method to Tune the Fuzzy Controller

2013-04-08
2013-01-0688
A two-passenger, all-wheel-drive urban electric vehicle (AUTO21EV) with four direct-drive in-wheel motors has been designed and developed at the University of Waterloo. An advanced genetic-fuzzy active steering controller is developed based on this vehicle platform. The rule base of the fuzzy controller is developed from expert knowledge, and a multi-criteria genetic algorithm is used to optimize the parameters of the fuzzy active steering controller. To evaluate the performance of this controller, a computational model of the AUTO21EV is driven through several standard test maneuvers using an advanced path-following driver model. As the final step in the evaluation process, the genetic-fuzzy active steering controller is implemented in a hardware- and operator-in-the-loop driving simulator to confirm its performance and effectiveness.
Journal Article

Development of an Advanced Torque Vectoring Control System for an Electric Vehicle with In-Wheel Motors using Soft Computing Techniques

2013-04-08
2013-01-0698
A two-passenger, all-wheel-drive urban electric vehicle (AUTO21EV) with four direct-drive in-wheel motors has been designed and developed at the University of Waterloo. A 14-degree-of-freedom model of this vehicle has been used to develop a genetic fuzzy yaw moment controller. The genetic fuzzy yaw moment controller determines the corrective yaw moment that is required to stabilize the vehicle, and applies a virtual yaw moment around the vertical axis of the vehicle. In this work, an advanced torque vectoring controller is developed, the objective of which is to generate the required corrective yaw moment through the torque intervention of the individual in-wheel motors, stabilizing the vehicle during both normal and emergency driving maneuvers. Novel algorithms are developed for the left-to-right torque vectoring control on each axle and for the front-to-rear torque vectoring distribution action.
Journal Article

Numerical Investigation of Buoyancy-Driven Flow in a Simplified Underhood with Open Enclosure

2013-04-08
2013-01-0842
Numerical results are presented for simulating buoyancy driven flow in a simplified full-scale underhood with open enclosure in automobile. The flow condition is set up in such a way that it mimics the underhood soak condition, when the vehicle is parked in a windbreak with power shut-down after enduring high thermal loads due to performing a sequence of operating conditions, such as highway driving and trailer-grade loads in a hot ambient environment. The experimental underhood geometry, although simplified, consists of the essential components in a typical automobile underhood undergoing the buoyancy-driven flow condition. It includes an open enclosure which has openings to the surrounding environment from the ground and through the top hood gap, an engine block and two exhaust cylinders mounted along the sides of the engine block. The calculated temperature and velocity were compared with the measured data at different locations near and away from the hot exhaust plumes.
Journal Article

Study of the Motion of Floating Piston Pin against Pin Bore

2013-04-08
2013-01-1215
One of the major problems that the automotive industry faces is reducing friction to increase efficiency. Researchers have shown that 30% of the fuel energy was consumed to overcome the friction forces between the moving parts of any automobile, Holmberg et al. [1]. The interface of the piston pin and pin bore is one of the areas that generate high friction under severe working conditions of high temperature and lack of lubrication. In this research, experimental investigation and theoretical simulation have been carried out to analyze the motion of the floating pin against pin bore. In the experimental study, the focus was on analyzing the floating pin motion by using a bench test rig to simulate the floating pin motion in an internal combustion engine. A motion data acquisition system was developed to capture and record the pin motion. Thousands of images were recorded and later analyzed by a code written by MATLAB.
Journal Article

Effects of Gasoline and Ethanol Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2013-04-08
2013-01-0893
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries and to buffer the potential organic acids present in an ethanol blended fuel to enhance storage stability. The impact of these inhibitors on spark-ignition engine fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the corrosion inhibitors to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a second market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel, specifically E85 (Ethanol Fuel Blends); and, to show how the variation in the concentrations of the components of the CIs impacts the operation and performance of vehicles, specifically, the effects on intake valve deposit formation.
Technical Paper

Driver Visibility: Customer Insights and Metric Development

2013-04-08
2013-01-1029
In recent years, there has been a growing interest in driver visibility. This is, in part, due to increasing emphasis placed on design factors influencing visibility such as: aerodynamics, styling, structural stiffness and vehicle packaging. During the development process of a vehicle, it is important to be able to quantify all of these factors. Visibility, however, owing to its sensory nature, has been harder to quantify. As a result, General Motors (GM) has undertaken a study to gain deeper insight into customer perceptions surrounding visibility. Clinics were conducted to help determine the relative importance of different metrics. The paper also explores several new metrics that can help predict customer satisfaction based on vehicle configuration.
Technical Paper

Correlating Measured Combustion Performance with CFD Predicted In-Cylinder Flows for a Spark-Ignition Direct-Injection (SIDI) Engine with Enhanced Charge Motion

2013-04-08
2013-01-1090
A numerical and corresponding experimental study was undertaken to identify the ability to accurately predict combustion performance using our 3-D numerical tools for a direct-injection homogeneous-charge engine. To achieve a significant range of combustion rates, the evaluation was conducted for the engine operating with and without enhanced charge motion. Five charge motion configurations were examined, each having different levels of swirl and tumble flow leading to different turbulence generation and decay characteristics. A detailed CFD analysis provides insight into the in-cylinder flow requirements as well as the accuracy of the submodels. The in-cylinder air-fuel distribution, the mass-averaged swirl and tumble levels along with mean flow and turbulent kinetic energies are calculated throughout the induction and compression processes.
X