Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Classification and Characterization of Heat Release Rate Traces in Low Temperature Combustion for Optimal Engine Operation

2024-04-09
2024-01-2835
Low temperature combustion (LTC) modes are among the advanced combustion technologies which offer thermal efficiencies comparable to conventional diesel combustion and produce ultra-low NOx and particulate matter (PM) emissions. However, combustion timing control, excessive pressure rise rate and high cyclic variations are the common challenges encountered by the LTC modes. These challenges can be addressed by developing model-based control framework for the LTC engine. In the current study, in-cylinder pressure data for dual-fuel LTC engine operation is analyzed for 636 different operating conditions and the heat release rate (HRR) traces are classified into three distinct classes based on their distinct shapes. These classes are named as Type-1, Type-2 and Type-3, respectively.
Technical Paper

Numerical Study of a Six-Stroke Gasoline Compression Ignition (6S-GCI) Engine Combustion with Oxygenated Fuels

2024-04-09
2024-01-2373
A numerical investigation of a six-stroke direct injection compression ignition engine operation in a low temperature combustion (LTC) regime is presented. The fuel employed is a gasoline-like oxygenated fuel consisting of 90% isobutanol and 10% diethyl ether (DEE) by volume to match the reactivity of conventional gasoline with octane number 87. The computational simulations of the in-cylinder processes were performed using a high-fidelity multidimensional in-house 3D CFD code (MTU-MRNT) with improved spray-sub models and CHEMKIN library. The combustion chemistry was described using a two-component (isobutanol and DEE) fuel model whose oxidation pathways were given by a reaction mechanism with 177 species and 796 reactions.
Technical Paper

Development and Validation of Dynamic Programming based Eco Approach and Departure Algorithm

2024-04-09
2024-01-1998
Eco Approach and Departure (Eco-AnD) is a Connected Automated Vehicle (CAV) technology aiming to reduce energy consumption for crossing a signalized intersection or set of intersections in a corridor that features vehicle-to-infrastructure (V2I) communication capability. This research focuses on developing a Dynamic Programming (DP) based algorithm for a PHEV operating in Charge Depleting mode. The algorithm used the Reduced Order Energy Model (ROM) to capture the vehicle powertrain characteristics and road grade to capture the road dynamics. The simulation results are presented for a real-world intersection and 20-25% energy benefits are shown by comparing against a simulated human driver speed profile. The vehicle-level validation of the developed algorithm is carried out by performing closed-course track testing of the optimized speed solutions on a real CAV vehicle.
Technical Paper

Facilitating Project-Based Learning Through Application of Established Pedagogical Methods in the SAE AutoDrive Challenge Student Design Competition

2024-04-09
2024-01-2075
The AutoDrive Challenge competition sponsored by General Motors and SAE gives undergraduate and graduate students an opportunity to get hands-on experience with autonomous vehicle technology and development as they work towards their degree. Michigan Technological University has participated in the AutoDrive Challenge since its inception in 2017 with students participating through MTU’s Robotic System Enterprise. The MathWorks Simulation Challenge has been a component of the competition since its second year, tasking students with the development of perception, control and testing algorithms using MathWorks software products. This paper presents the pedagogical approach graduate student mentors used to enable students to build their understanding of autonomous vehicle concepts using familiar tools. This approach gives undergraduate students a productive experience with these systems that they may not have encountered in coursework within their academic program.
Technical Paper

Do Drivers Pay Attention during Highway-Based Automated Lane Changes while Operating under Hands-Free Partially Automated Driving?

2024-04-09
2024-01-2396
This study assessed a driver’s ability to safely manage Super Cruise lane changes, both driver commanded (Lane Change on Demand, LCoD) and system triggered Automatic Lane Changes (ALC). Data was gathered under naturalistic conditions on public roads in the Washington, D.C. area with 12 drivers each of whom were provided with a Super Cruise equipped study vehicle over a 10-day exposure period. Drivers were shown how to operate Super Cruise (e.g., system displays, how to activate and disengage, etc.) and provided opportunities to initiate and experience commanded lane changes (LCoD), including how to override the system. Overall, drivers experienced 698 attempted Super Cruise lane changes, 510 Automatic and 188 commanded LCoD lane changes with drivers experiencing an average of 43 Automatic lane changes and 16 LCoD lane changes.
Technical Paper

Measurement of Hydrogen Jet Equivalence Ratio using Laser Induced Breakdown Spectroscopy

2024-04-09
2024-01-2623
Hydrogen exhibits the notable attribute of lacking carbon dioxide emissions when used in internal combustion engines. Nevertheless, hydrogen has a very low energy density per unit volume, along with large emissions of nitrogen oxides and the potential for backfire. Thus, stratified charge combustion (SCC) is used to reduce nitrogen oxides and increase engine efficiency. Although SCC has the capacity to expand the lean limit, the stability of combustion is influenced by the mixture formation time (MFT), which determines the equivalence ratio. Therefore, quantifying the equivalence ratio under different MFT is critical since it determines combustion characteristics. This study investigates the viability of using a Laser Induced Breakdown Spectroscopy (LIBS) for measuring the jet equivalence ratio. Furthermore, study was conducted to analyze the effect of MFT and the double injection parameter, namely the dwell time and split ratio, on the equivalence ratio.
Technical Paper

Kinetic Model Development for Selective Catalytic Converter Integrated Particulate Filters

2024-04-09
2024-01-2631
To meet the stringent NOx and particulate emissions requirements of Euro 6 and China 6 standard, Selective Catalyst Reduction (SCR) catalyst integrated with wall flow particulate filter (SCR-DPF) has been found to be an effective solution for the exhaust aftertreatment systems of diesel engines. NOx is reduced by ammonia generated from urea injection while the filter effectively traps and burns the particulate matter periodically in a process called regeneration. The engine control unit (ECU) effectively manages urea injection quantity, timing and soot burning frequency for the stable functioning of the SCR-DPF without impacting drivability. To control the NOx reduction and particulate regeneration process, the control unit uses lookup tables generated from extensive hardware testing to get the current soot load and NOx slip information of SCR-DPF as a function of main exhaust state variables.
Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Advanced Material Characterization of Hood Insulator Foams for Pedestrian Head Impact

2024-04-09
2024-01-2682
Hood insulators are widely used in automotive industry to improve noise insulation, pedestrian impact protection and to provide aesthetic appeal. They are attached below the hood panel and are often complex in shape and size. Pedestrian head impacts are highly dynamic events with a compressive strain rate experienced by the insulator exceeding 300/s. The energy generated by the impact is partly absorbed by the hood insulators thus reducing the head injury to the pedestrian. During this process, the insulator experiences multi-axial stress states. The insulators are usually made of soft multi-layered materials, such as polyurethane or fiberglass, and have a thin scrim layer on either side. These materials are foamed to their nominal thickness and are compression molded to take the required shape of the hood. During this process they undergo thickness reduction, thereby increasing their density.
Technical Paper

Route-Optimized Energy Usage for a Plug-in Hybrid Electric Vehicle Using Mode Blending

2024-04-09
2024-01-2775
This paper presents a methodology to optimize the blending of charge-depleting (CD) and charge-sustaining (CS) modes in a multi-mode plug-in hybrid electric vehicle (PHEV). The objective of the optimization is to best utilize onboard energy for minimum overall energy consumption based on speed and elevation profile. The optimization reduces overall energy consumption when the selected route cannot be completely driven in all-electric mode. The optimization method splits drive cycles into constant distance segments and then uses a reduced-order model to sort the segments by the best use of battery energy vs. fuel energy. The PHEV used in this investigation is the Stellantis Pacifica. Results support energy savings up to 20% which depend on the route and initial battery State of Charge (SOC). Initial optimization takes 1 second for 38 km and 3 seconds for 154 km.
Technical Paper

Dynamic Characterization of a Twin Plate Torque Converter Clutch During Controlled Slip

2024-04-09
2024-01-2715
This paper details testing for torque converter clutch (TCC) characterization during steady state and dynamic operation under controlled slip conditions on a dynamometer setup. The subject torque converter under test is a twin plate clutch with a dual stage turbine damper without a centrifugal pendulum absorber. An overview is provided of the dynamometer setup, hydraulic system and control techniques for regulating the apply pressure to the torque converter and clutch. To quantify the performance of the clutch in terms of control stability, pressure to torque relationship and the dynamic behavior during apply and release, a matrix of oil temperatures, output speeds, input torques, and clutch apply pressures were imposed upon the torque converter.
Technical Paper

VISION: Vehicle Infrared Signature Aware Off-Road Navigation

2024-04-09
2024-01-2661
Vehicle navigation in off-road environments is challenging due to terrain uncertainty. Various approaches that account for factors such as terrain trafficability, vehicle dynamics, and energy utilization have been investigated. However, these are not sufficient to ensure safe navigation of optionally manned ground vehicles that are prone to detection using thermal infrared (IR) seekers in combat missions. This work is directed towards the development of a vehicle IR signature aware navigation stack comprised of global and local planner modules to realize safe navigation for optionally manned ground vehicles. The global planner used A* search heuristics designed to find the optimal path that minimizes the vehicle thermal signature metric on the map of terrain’s apparent temperature. The local planner used a model-predictive control (MPC) algorithm to achieve integrated motion planning and control of the vehicle to follow the path waypoints provided by the global planner.
Technical Paper

Electric Motor Noise Reduction with Stator Mounted NVH Insert Ring

2024-04-09
2024-01-2205
Electric motor noise mitigation is a challenge in electric vehicles (EVs) due to the lack of engine masking noise. The design of the electric motor mounting configuration to the motor housing has significant impacts on the radiated noise of the drive unit. The stator can be bolted or interference-fit with the housing. A bolted stator creates motor whine and vibration excited by the motor torque ripple at certain torsional resonance frequencies. A stator with interference fit configuration stiffens the motor housing and pushes resonances to a higher frequency range, where masking noise levels are higher at faster vehicle speeds. However, this comes with additional cost and manufacturing process and may impact motor efficiency due to high stress on stators. In this paper, a thin sheet metal NVH ring is developed as a tunable stiffness device between the stator and the motor housing. It is pre-compressed and provides additional torsional rigidity to mitigate torsional excitations.
Technical Paper

Study on Range Improvement Controls and Method for Electric Vehicles

2024-01-16
2024-26-0132
Electric Vehicles are rapidly growing in the market yet various doubts on success of its adaptation were noted all along the globe. On the question part range is one of the major attribute; however, range anxiety has greatly inspired manufacturers to explore new practices to improve. One of the most important components of an electric vehicles (EV) is the battery, which converts chemical energy to electrical energy thereby liberating heat energy as the loss. When this heat energy loss is high, the energy available in the battery for propulsion is reduced significantly. Additionally, with a higher heat loss in the battery, system is prone to failure or reduced mileage. Therefore, controlling/maintaining system temperature under safe usable limits even during harsh conditions is critical. Simple reduction in energy consumption of electrical cooling/heating devices used with regenerative energy techniques can greatly help in range improvement.
Technical Paper

Challenges in NVH Refinement of Electric Vehicle Built on ICE Platform

2024-01-16
2024-26-0216
Electric car markets experience exponential growth. As per IEA battery electric vehicles sales exceeded 10 million in 2022 [1] . There is projection from IEA that EV sales will touch 40 million mark by 2030, major contribution from China (12 m) and Europe (13.3 m) regions [2]. This growth projection attributed to many global factors, government policies, automakers commitment, climate change, etc. There is a massive push from global institutions and automobile community for transition to electric mobility. There is a 66% likelihood that the annual average near-surface global temperature between 2023 and 2027 will be more than 1.5°C above pre-industrial levels for at least one year. There is a 98% likelihood that at least one of the next five years, and the five-year period, will be the warmest on record [3]. Hence transition is imperative to reduce greenhouse gases and adhere to climate change commitments. Today EVs are not popular as ICE.
Technical Paper

Method of Improving Slam Durability Fatigue of Vehicle Liftgate Subsystem for Fast-Track Vehicle Development Cycle

2024-01-16
2024-26-0302
With reference to present literature, most OEMs are working on reducing product development time by around ~20%, through seamless integration of digital ecosystem and focusing on dynamic customer needs. The Systems Engineering approach focuses on functions & systems rather than components. In this approach, designers (Computer Aided Design) / analysts (Computer Aided Engineering) need to understand program requirements early to enable seamless integration. This approach also reduces the number of iterative loops between cross functions thereby reducing the development cycle time. In this paper, we have attempted to tackle a common challenge faced by Closures (Liftgate) engineering: meeting slam durability fatigue life while replicating customer normal and abusive closing behavior.
Technical Paper

Static Seat Comfort CAE DOE Variation Study to Understand the Impact of Seating Adjustment and Occupant Posture on Seat Pressure Distribution

2024-01-16
2024-26-0287
The automotive seat has undergone significant advancements in technology due to changing customer demands, levels of autonomy and vehicle regulations. These advancements have presented both opportunities and challenges in creating a pleasant experience for customers by ensuring optimal seat comfort and a joyful human experience. Seats are always being built to accommodate different percentiles of occupant comfort requirements; original equipment manufacturers come up with various seating adjustment features. However, there is considerable variation among each percentile of occupants in how they utilize these features to achieve a comfortable seating position based on their unique preferences and circumstances. Additionally, there are variations in occupant postures due to the ways people have adapted their driving habits or styles when it comes to the way they sit.
Technical Paper

Application of the Design of Experiments to Study the Sensitivity and Contribution of a Seat Back Bladder Bolster on Occupant Lateral Support Performance

2024-01-16
2024-26-0303
Automotive seat comfort systems provide occupants with a choice to adjust the seat to individual preference, enhancing the customized comfort feel. Seat comfort systems such as massager, lumbar support bladders, seat cushion bolster bladders and seat back bolster bladders are increasingly adopted in automotive seats as customer demand for customizable seats is on the rise. Development of seat comfort systems is mainly driven by Tier 1 suppliers to an automotive original equipment manufacturer (OEM). The Automotive OEM must wait until the final seat prototype is ready with all the seat comfort systems packaged to evaluate the seat comfort performance. Computer Aided Engineering (CAE) Tools like CASIMIR provide detail dummies representing humans with tissues and muscles, allowing occupant seat comfort to be predicted virtually.
Technical Paper

Cycle Aging of a Commercial Lithium-Ion Cell – A Numerical Approach

2023-09-14
2023-28-0027
With advancement and increase in usage of Li-ion batteries in sectors such as electronic equipment’s, Electric Vehicles etc battery lifetime is critical for estimation of product life. It is well known that temperature and voltage strongly influence the degradation of lithium-ion batteries and that it depends on the chemical composition and structure of the positive and negative electrodes. Lithium batteries are continuously subjected to various load cycles and ambient temperatures depending on application of battery. Thus, in many applications Cycle aging could be the main contributor or factor for battery degradation, thus reduction in life of product. Thus, there is strong need for researchers and engineers to help improve life of cells or batteries being used in electric vehicles. In this present work, cycle aging of commercial 18650 cell is studied at ambient temperature. Experimental data shows that about nearly 20 % cell capacity degrades at ambient temperature.
Technical Paper

Energy Storage Requirements and Implementation for a Lunar Base Microgrid

2023-09-05
2023-01-1514
Future lunar missions will utilize a Lunar DC microgrid (LDCMG) to construct the infrastructure for distributing, storing, and utilizing electrical energy. The LDCMG’s energy management, of which energy storage systems (ESS) are crucial components, will be essential to the success of the missions. Standard system design currently employs a rule-of-thumb approach in which design methodologies rely on heuristics that may only evaluate local power balancing requirements. The Hamiltonian surface shaping and power flow control (HSSPFC) method can also be utilized to analyze and design the lunar LDCMG power distribution network and ESS. In this research, the HSSPFC method will be utilized to determine the ideal energy storage requirements for ESS and the optimally distributed control architecture.
X