Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Do Drivers Pay Attention during Highway-Based Automated Lane Changes while Operating under Hands-Free Partially Automated Driving?

2024-04-09
2024-01-2396
This study assessed a driver’s ability to safely manage Super Cruise lane changes, both driver commanded (Lane Change on Demand, LCoD) and system triggered Automatic Lane Changes (ALC). Data was gathered under naturalistic conditions on public roads in the Washington, D.C. area with 12 drivers each of whom were provided with a Super Cruise equipped study vehicle over a 10-day exposure period. Drivers were shown how to operate Super Cruise (e.g., system displays, how to activate and disengage, etc.) and provided opportunities to initiate and experience commanded lane changes (LCoD), including how to override the system. Overall, drivers experienced 698 attempted Super Cruise lane changes, 510 Automatic and 188 commanded LCoD lane changes with drivers experiencing an average of 43 Automatic lane changes and 16 LCoD lane changes.
Technical Paper

Dynamic Simulation of Steering Crimp Ring Assembly Process Using CAE and its Correlation with Testing

2024-04-09
2024-01-2733
The process of assembling the bearing and crimp ring to the steering pinion shaft is intricate. The bearing is pressed into its position via the crimp ring, which is tipped inward and fully fitted into a groove on the pinion shaft. Only when the bearing is pressed to a low surface on the pinion shaft, the caulking force for the crimp ring is achieved. The final caulking distance for the crimp ring confirms the proper bearing position. Simulating this transient fitting process using CAE is a challenging topic. Key factors include controlling applied force, defining contact between bearing and pinion surface, and defining contact between crimp ring and bearing surface from full close to half open transition. The overall CAE process is validated through correlation with testing.
Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Technical Paper

Static Seat Comfort CAE DOE Variation Study to Understand the Impact of Seating Adjustment and Occupant Posture on Seat Pressure Distribution

2024-01-16
2024-26-0287
The automotive seat has undergone significant advancements in technology due to changing customer demands, levels of autonomy and vehicle regulations. These advancements have presented both opportunities and challenges in creating a pleasant experience for customers by ensuring optimal seat comfort and a joyful human experience. Seats are always being built to accommodate different percentiles of occupant comfort requirements; original equipment manufacturers come up with various seating adjustment features. However, there is considerable variation among each percentile of occupants in how they utilize these features to achieve a comfortable seating position based on their unique preferences and circumstances. Additionally, there are variations in occupant postures due to the ways people have adapted their driving habits or styles when it comes to the way they sit.
Technical Paper

Application of the Design of Experiments to Study the Sensitivity and Contribution of a Seat Back Bladder Bolster on Occupant Lateral Support Performance

2024-01-16
2024-26-0303
Automotive seat comfort systems provide occupants with a choice to adjust the seat to individual preference, enhancing the customized comfort feel. Seat comfort systems such as massager, lumbar support bladders, seat cushion bolster bladders and seat back bolster bladders are increasingly adopted in automotive seats as customer demand for customizable seats is on the rise. Development of seat comfort systems is mainly driven by Tier 1 suppliers to an automotive original equipment manufacturer (OEM). The Automotive OEM must wait until the final seat prototype is ready with all the seat comfort systems packaged to evaluate the seat comfort performance. Computer Aided Engineering (CAE) Tools like CASIMIR provide detail dummies representing humans with tissues and muscles, allowing occupant seat comfort to be predicted virtually.
Technical Paper

INCORPORATING METHODS OF GRAPHENE IN POLYMERIC NANOCOMPOSITES TOWARDS AUTOMOTIVE APPLICATIONS -A BRIEF REVIEW

2024-01-08
2023-36-0015
This work aims to develop a PA6 nanocomposite with glass fiber (GF) and graphene nanoplatelets (GNPs) focusing on automotive parts application. Polyamide 6 is a semi-crystalline polymer that exhibits high fatigue and flexural strength, making it viable for rigorous applications. Along with the improved electrical, mechanical, thermal, and optical performance achieved in PA6 and GF-based nanocomposites, they can fill complex geometries, have great durability, and are widely utilized due to their capacity of reducing the weight of the vehicle besides a cost reduction potential. The glass fiber is a filamentary composite, usually aggregated in polymeric matrices, which aims to amplify the mechanical properties of polymers, mainly the tensile strength in the case of PA6.
Technical Paper

Investigation of the Impact of Fiberglass on the Performance of Injected Thermoplastic Automotive Parts

2024-01-08
2023-36-0046
Manufacturing processes impact many factors on a product. Depending on the selected method, development time, part performance and cost are affected. In the automotive sector, there is a growing demand for weight reduction due to the advent of electrification and the greenhouse gas emission regulations. In addition, geometric complexity is a challenging factor for the feasibility of mass production of parts. In this scenario, plastic materials are a very interesting option for application in various vehicle parts, since these materials can be molded by injection, vacuum forming, among others, while maintaining good mechanical properties. Almost a third of a vehicle’s parts are polymeric, making the development of these materials strategic for car manufacturers. This article investigates the impact of the presence of fiberglass in a thermoplastic automotive body part.
Technical Paper

Polyurethane foam coated with organic filers for sound absorption: A briefre view

2024-01-08
2023-36-0088
Polyurethane (PU) foams are versatile in automotive applications for sound absorption, due to their superior acoustic-absorbing properties, vibration damping and robustness, and seat cushioning products due to their easiness of manufacturing process and cost-effectiveness. In recent studies, micro- and nano-particles were used to improve sound absorption efficiency, these fillers help to form interconnected pore structures in the foam matrix, and this interconnection of pores is advantageous in dissipating heat generated from wave friction with the air. Some of the micro- and nano-particles used are natural fibers (like cellulose, fir, palm), silica, clay, graphene and derivatives, zeolite, and others. This review is an overview of recent advances in the incorporation of fillers in PU foams and the influence they have on the sound absorption capacity of the foams.
Technical Paper

Connected Vehicle Data Applied to Feature Optimization and Customer Experience Improvement

2024-01-08
2023-36-0109
In a recent time, which new vehicle lines comes with a huge number of sensors, control units, embedded technologies, and the complexity of these systems (electronics, electrical and electromechanical parts) increases in an exponential way. Considering these events, the expressive generated data amount grows in the same pace, so, consume, transform, and analyze all these data to better understand the modern customer, their needs and how they use the car features becomes necessary. Through that scenario, connected vehicles developed by Ford Motor Company has been generating opportunities to feature’s improvement and cost reduction based on data analysis. This growing quantity of data might be used to optimize feature systems and help engineering teams to understand how the features have been used and enhance the systems engineering design for new or existing features.
Technical Paper

Potential Application of Rubber-Graphene Compounds in the Automotive Parts

2024-01-08
2023-36-0028
Rubber is one of the most used materials currently selected to produce automotive parts, but, for specific applications, some improvement is required in its properties through the addition of some components to the rubber compound formulation. Because of that, mechanical, thermal, and chemical properties are enhanced in order to meet strict requirements of the vast range of application of the rubber compounds. In addition to improving material properties, the combination of different substances, also aims to improve processability and reduce the costs of the final product. Recently, the use of nanofillers has been very explored because of their distinctive properties and characteristics. Among the nanofillers under study, graphene is known for its high-barrier property, thermal and electrical conductivities, and good mechanical properties.
Technical Paper

Connected Vehicle Data – Prognostics and Monetization Opportunity

2023-10-31
2023-01-1685
In recent years, the automotive industry has seen an exponential increase in the replacement of mechanical components with electronic-controlled components or systems. engine, transmission, brake, exhaust gas recirculation (EGR), lighting, driver-assist technologies, etc. are all monitored and/or controlled electronically. Connected vehicles are increasingly being used by Original Equipment Manufacturers (OEMs) to collect and transmit vehicle data in real-time via the use of various sensors, actuators, and communication technologies. Vehicle telematics devices can collect and transmit data about the vehicle location, speed, fuel efficiency, State Of Charge (SOC), auxiliary battery voltage, emissions, performance, and more. This data is sent over to the cloud via cellular networks, where it can be processed and analyzed to improve their products and services by automotive companies and/or fleet management.
Technical Paper

Residual Stress Induced Fretting Fatigue during Fatigue Testing for Materials Produced by Laser Powder Bed Fusion Process

2023-04-11
2023-01-0894
Fretting fatigue was observed in standard cylindrical fatigue samples at the regions in contact with the grips of the test frames during fatigue testing for AlSi10Mg aluminum alloy produced by laser powder bed fusion process (L-PBF). The failure of the fatigue sample grips occurs much earlier than the failure of the gauge section. This results in a damaged sample and the sample cannot be reused to continue the test. This type of failure is rarely seen in materials produced by traditional manufacturing processes. In this study, X-ray residual stress analysis was performed to understand the cause of failure for L-PBF AlSi10Mg with the as-built surface condition. The result indicates that the fretting fatigue failure was caused by the strong tensile residual stress in the as-built state combining with the fretting wear between the sample and the grip. A few potential solutions to avoid the fretting fatigue failure were investigated.
Technical Paper

Exterior-Interior Interface Connection Design for Optimal Performance in Automotive Systems

2023-04-11
2023-01-0935
The vehicle instrument panel (IP) system has several interactions with the surrounding components such as the Dash, Cowl, Cross Car Beam (CCB), Floor, Body Side etc. With such interactions comes different loadings, usage scenarios, interfaces and design challenges to overcome. For the specific case of the IP to Cowl & Dash interfaces, the position and performance in different load cases, such as, but not limited to, vibration and heat expansion loading as well as the assembly process. A design solution is required to enhance the performance in all these scenarios while maintaining the cost, weight & complexity as low as possible. This paper describes the development process of an optimized solution with a multi-disciplinary approach using advanced computer aided engineering (CAE) optimization tools, which involved performance in multiple virtual evaluations and mass.
Journal Article

On the Development of CFD Methodology for Free-Falling Varnish Stream Modeling to Support EV Motor Manufacturing

2023-04-11
2023-01-0158
When manufacturing the stators in EV motors, stator wires are first coated with a layer of resin to provide primary insulation. After winding, impregnating varnish fills all voids within the windings and between the windings and lamination. In addition to electrically insulating the copper wires, another function of the varnish fill is to mechanically secure the copper wires from movement. The process is not complicated in terms of physics. In essence, the mechanics of the varnish flow is the balance of inertia force, viscous force, gravity and surface tension. However, understanding the fluid dynamics of the varnish flow is critical to predicting the quality of the varnish fill, which has a tremendous impact on motor performance. With the advancement of computational fluid dynamics (CFD), the industry can benefit greatly if the varnish trickling process can be tuned, without physical tryouts, to achieve optimal fill.
Technical Paper

An Optimization Model for Die Sets Allocation to Minimize Supply Chain Cost

2022-07-08
2022-01-5057
In this paper, a novel mixed-integer programming model is developed to optimally assign the die sets to candidate plants to minimize the total costs. The total costs include freight shipping stamped parts to assembly plants, die set movement, outsourcing, and utilization. Therefore, the objective function is weighted multi-criteria and it takes into consideration some of the key constraints in the real-world condition including “must-move die sets”. An optimization tool has been developed that takes several inputs and feeds them as the input to the mathematical model and generates the optimal assignments with the directional costs as the output. The tool has been tested for several plants at Ford and has proved its robustness by saving millions of dollars. The developed tool can easily be applied to other manufacturing systems and original equipment manufacturers (OEMs).
Technical Paper

Test-in-Production Framework on a Microcontroller Environment

2022-03-29
2022-01-0112
In modern automobiles, many new complex features are enabled by software and sensors. When combined with the variability of real-world environments and scenarios, validation of this ever-increasing amount of software becomes complex, costly, and takes a lot of time. This challenges automakers ability to quickly and reliably develop and deploy new features and experiences that their customers want in the marketplace. While traditional validation methods and modern virtual validation environments can cover most new feature testing, it is challenging to cover certain real-world scenarios. These scenarios include variation in weather conditions, roadway environments, driver usage, and complex vehicle interactions. The current approach to covering these scenarios often relies on data collected from long vehicle test trips that try to capture as many of these unique situations as possible. These test trips contribute significantly to the validation cost and time of new features.
Technical Paper

CFD Analysis of a Centrifugal Pump Controlling a Vehicle Coolant Hydraulic System: a Comparison between MRF and Transient Approaches

2022-03-29
2022-01-0780
Centrifugal pumps are widely used in different thermal fluid systems in automobile industries. Computational fluid dynamics (CFD) analysis of such a thermal fluid system depends on the accurate component modeling of the system components. This paper presents CFD analysis of a centrifugal pump with two different approaches: Transient (moving grid) and the steady state - Multiple Reference Frame (MRF) methods using a commercial CFD solver Simerics MP+®. In addition, flow and pressure drop data obtained using CFD simulations of a vehicle coolant hydraulic system was compared to results from rig test data. The Transient method incorporates the real motion of the pump blades geometry and temporal flow solutions are obtained for instantaneous positions of the blade geometry. In MRF approach, the flow governing equations for the stationary zone are solved in the absolute/inertial reference frame, whereas flow in the moving zone is solved in the relative/non-inertial reference frame.
Journal Article

3D CFD Simulation of Hydraulic Test of an Engine Coolant System

2022-03-29
2022-01-0207
Designing an efficient vehicle coolant system depends on meeting target coolant flow rate to different components with minimum energy consumption by coolant pump. The flow resistance across different components and hoses dictates the flow supplied to that branch which can affect the effectiveness of the coolant system. Hydraulic tests are conducted to understand the system design for component flow delivery and pressure drops and assess necessary changes to better distribute the coolant flow from the pump. The current study highlights the ability of a complete 3D Computational Fluid Dynamics (CFD) simulation to effectively mimic a hydraulic test. The coolant circuit modeled in this simulation consists of an engine water-jacket, a thermostat valve, bypass valve, a coolant pump, a radiator, and flow path to certain auxiliary components like turbo charger, rear transmission oil cooler etc.
Technical Paper

Developments of Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) Project

2022-03-29
2022-01-0341
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project that developed structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components were selected for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Technical Paper

An Investigation of the Simulation of Sintering Distortion in a 316L Part Manufactured Using Bound Metal Deposition 3D Printing

2022-03-29
2022-01-0346
Metal binderjetting (MBJ) and bound metal deposition (BMD) are high throughput additive manufacturing process that have the potential to meet the needs of automotive volume production. In many cases, these processes require a sintering post-process to meet final dimensions. Because the sintering stage is performed free standing (i.e. without the use of tooling) and can involve up to a 20% dimensional change from green part to the final part shape, part distortion can be a concern. In this study, the sintering stage of a bridge geometry was simulated under different parameter settings using a Finite Element Analysis. The sensitivity of the simulation to various process parameter inputs was examined. Physical parts were then produced in 316L using a bound metal deposition and sintering process and compared to prediction. The sintering simulation indicated good agreement with experiment for some dimensions but highlighted the need for additional analysis.
X