Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Property and Fiber Orientation Determination for Carbon Fiber Composite

2018-04-03
2018-01-1216
Unexpected severe failures occur during the warm forming procedure of carbon fiber material due to the existence of extremely large deformation/strain. To evaluate this failure, a good understanding the accurate material property under certain loading is important to evaluate the forming feasibility of carbon fiber material. Also, a clear connection between the fiber orientation and the material property helps to increase the accuracy of the forming prediction. Therefore, an experimental test is needed to evaluate the material property as well as the fiber orientation. In this paper, a uniaxial tension test for the prepreg carbon fiber under the warm forming condition is performed. A halogen lamp is used to heat the specimen to reach the warm forming condition. A 3D Digital Image Correlation (3D-DIC) is utilized to measure the material property and the fiber orientation in this test, along with a DIP system.
Technical Paper

Surface Quality Inspection for Vehicle Front Panel Using Polarized Laser Inspection Method

2017-03-28
2017-01-0395
Vehicle front panel is an interior part which has a major impact on the consumers’ experience of the vehicles. To keep a good appearance during long time aging period, most of the front panel is designed as a rough surface. Some types of surface defects on the rough surface can only be observed under the exposure of certain angled sun light. This brings great difficulties in finding surface defects on the production line. This paper introduces a novel polarized laser light based surface quality inspection method for the rough surfaces on the vehicle front panel. By using the novel surface quality inspection system, the surface defects can be detected real-timely even without the exposure under certain angled sun light. The optical fundamentals, theory derivation, experiment setup and testing result are shown in detail in this paper.
Journal Article

Determination of Weld Nugget Size Using an Inverse Engineering Technique

2013-04-08
2013-01-1374
In today's light-weight vehicles, the strength of spot welds plays an important role in overall product integrity, reliability and customer satisfaction. Naturally, there is a need for a quick and reliable technique to inspect the quality of the welds. In the past, the primary quality control tests for detecting weld defects are the destructive chisel test and peel test [1]. The non-destructive evaluation (NDE) method currently used in industry is based on ultrasonic inspection [2, 3, 4]. The technique is not always successful in evaluating the nugget size, nor is it effective in detecting the so-called “cold” or “stick” welds. Therefore, it is necessary to develop a precise and reliable noncontact NDE method for spot welds. There have been numerous studies in predicting the weld nugget size by considering the spot-weld process [5, 6].
Journal Article

Scanning Frequency Ranges of Harmonic Response for a Spot-Welded Copper-Aluminum Plate Using Finite Element Method

2011-04-12
2011-01-1076
In this paper, a finite element methodology is given in which finite element models of a three-weld Al-Cu plate is created with support and loading conditions emulating those seen in an optical lab. Harmonic response is sought for the models under the presumption that various defective welds are present. The numerical results are carefully examined to determine the guideline frequency range so the actual optical experiment can be carried out more efficiently.
X