Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Technical Paper

Assessing Powertrain Technology Performance and Cost Signposts for Electrified Heavy Duty Commercial Freight Vehicles

2024-04-09
2024-01-2032
Adoption of fuel cell electric vehicles (FCEV) or battery electric vehicles (BEV) in heavy-duty (HD) commercial freight transportation is hampered by difficult technoeconomic obstacles. To enable widespread deployment of electrified powertrains, fleet and operational logistics need high uptime and parity with diesel system productivity/total cost of ownership (TCO), while meeting safety compliance. Due to a mix of comparatively high powerplant and energy storage costs, high energy costs (more so for FCEV), greater weight (more so for BEV), slow refueling / recharging durations, and limited supporting infrastructure, FCEV and BEV powertrains have not seen significant uptake in the HD freight transport market. The use of dynamic wireless power transfer (DWPT) systems, consisting of inductive electrical coils on the vehicle and power source transmitting coils embedded in the roadways, may address several of these challenges.
Technical Paper

Assessing Resilience in Lane Detection Methods: Infrastructure-Based Sensors and Traditional Approaches for Autonomous Vehicles

2024-04-09
2024-01-2039
Traditional autonomous vehicle perception subsystems that use onboard sensors have the drawbacks of high computational load and data duplication. Infrastructure-based sensors, which can provide high quality information without the computational burden and data duplication, are an alternative to traditional autonomous vehicle perception subsystems. However, these technologies are still in the early stages of development and have not been extensively evaluated for lane detection system performance. Therefore, there is a lack of quantitative data on their performance relative to traditional perception methods, especially during hazardous scenarios, such as lane line occlusion, sensor failure, and environmental obstructions.
Technical Paper

Real World Use Case Evaluation of Radar Retro-reflectors for Autonomous Vehicle Lane Detection Applications

2024-04-09
2024-01-2042
Lane detection plays a critical role in autonomous vehicles for safe and reliable navigation. Lane detection is traditionally accomplished using a camera sensor and computer vision processing. The downside of this traditional technique is that it can be computationally intensive when high quality images at a fast frame rate are used and has reliability issues from occlusion such as, glare, shadows, active road construction, and more. This study addresses these issues by exploring alternative methods for lane detection in specific scenarios caused from road construction-induced lane shift and sun glare. Specifically, a U-Net, a convolutional network used for image segmentation, camera-based lane detection method is compared with a radar-based approach using a new type of sensor previously unused in the autonomous vehicle space: radar retro-reflectors.
Technical Paper

Engineering Requirements that Address Real World Hazards from Using High-Definition Maps, GNSS, and Weather Sensors in Autonomous Vehicles

2024-04-09
2024-01-2044
Evaluating real-world hazards associated with perception subsystems is critical in enhancing the performance of autonomous vehicles. The reliability of autonomous vehicles perception subsystems are paramount for safe and efficient operation. While current studies employ different metrics to evaluate perception subsystem failures in autonomous vehicles, there still exists a gap in the development and emphasis on engineering requirements. To address this gap, this study proposes the establishment of engineering requirements that specifically target real-world hazards and resilience factors important to AV operation, using High-Definition Maps, Global Navigation Satellite System, and weather sensors. The findings include the need for engineering requirements to establish clear criteria for a high-definition maps functionality in the presence of erroneous perception subsystem inputs which enhances the overall safety and reliability of the autonomous vehicles.
Technical Paper

Exploring Class 8 Long-Haul Truck Electrification: Key Technology Evaluation and Potential Challenges

2024-04-09
2024-01-2812
The phenomena of global warming and climate change are encouraging more and more countries, local communities, and companies to establish carbon neutrality targets, which has very significant implications for the US trucking industry. Truck electrification helps fleets to achieve zero tailpipe emissions and macro-scale decarbonization while allowing continued business growth in response to the rapid expansion of e-commerce and shipping related to increased globalization. This paper presents an analysis of Class 8 long-haul truck electrification using a commercial vehicle electrification evaluation tool and Fleet DNA drive data. The study provides new insight into the impacts of streamlined chassis, battery energy density, and superfast charging on battery capacity needs as well as implications for payload, energy consumption, and greenhouse gas emissions for electric long-haul trucks. The study also identifies a pathway for achieving optimal long-haul truck electrification.
Technical Paper

On Road vs. Off Road Low Load Cycle Comparison

2024-04-09
2024-01-2134
Reducing criteria pollutants while reducing greenhouse gases is an active area of research for commercial on-road vehicles as well as for off-road machines. The heavy duty on-road sector has moved to reducing NOx by 82.5% compared to 2010 regulations while increasing the engine useful life from 435,000 to 650,000 miles by 2027 in the United States (US). An additional certification cycle, the Low Load Cycle (LLC), has been added focusing on part load operation having tight NOx emissions levels. In addition to NOx, the total CO2 emissions from the vehicle will also be reduced for various model years. The off-road market is following with a 90% NOx reduction target compared to Tier 4 Final for 130-560 kW engines along with greenhouse gas targets that are still being established. The off-road market will also need to certify with a Low Load Application Cycle (LLAC), a version of which was proposed for evaluation in 2021.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Vehicle Lateral Offset Estimation Using Infrastructure Information for Reduced Compute Load

2023-04-11
2023-01-0800
Accurate perception of the driving environment and a highly accurate position of the vehicle are paramount to safe Autonomous Vehicle (AV) operation. AVs gather data about the environment using various sensors. For a robust perception and localization system, incoming data from multiple sensors is usually fused together using advanced computational algorithms, which historically requires a high-compute load. To reduce AV compute load and its negative effects on vehicle energy efficiency, we propose a new infrastructure information source (IIS) to provide environmental data to the AV. The new energy–efficient IIS, chip–enabled raised pavement markers are mounted along road lane lines and are able to communicate a unique identifier and their global navigation satellite system position to the AV. This new IIS is incorporated into an energy efficient sensor fusion strategy that combines its information with that from traditional sensor.
Technical Paper

Projecting Lane Lines from Proxy High-Definition Maps for Automated Vehicle Perception in Road Occlusion Scenarios

2023-04-11
2023-01-0051
Contemporary ADS and ADAS localization technology utilizes real-time perception sensors such as visible light cameras, radar sensors, and lidar sensors, greatly improving transportation safety in sufficiently clear environmental conditions. However, when lane lines are completely occluded, the reliability of on-board automated perception systems breaks down, and vehicle control must be returned to the human driver. This limits the operational design domain of automated vehicles significantly, as occlusion can be caused by shadows, leaves, or snow, which all occur in many regions. High-definition map data, which contains a high level of detail about road features, is an alternative source of the required lane line information. This study details a novel method where high-definition map data are processed to locate fully occluded lane lines, allowing for automated path planning in scenarios where it would otherwise be impossible.
Technical Paper

Road Snow Coverage Estimation Using Camera and Weather Infrastructure Sensor Inputs

2023-04-11
2023-01-0057
Modern vehicles use automated driving assistance systems (ADAS) products to automate certain aspects of driving, which improves operational safety. In the U.S. in 2020, 38,824 fatalities occurred due to automotive accidents, and typically about 25% of these are associated with inclement weather. ADAS features have been shown to reduce potential collisions by up to 21%, thus reducing overall accidents. But ADAS typically utilize camera sensors that rely on lane visibility and the absence of obstructions in order to function, rendering them ineffective in inclement weather. To address this research gap, we propose a new technique to estimate snow coverage so that existing and new ADAS features can be used during inclement weather. In this study, we use a single camera sensor and historical weather data to estimate snow coverage on the road. Camera data was collected over 6 miles of arterial roadways in Kalamazoo, MI.
Technical Paper

Quantitative Resilience Assessment of GPS, IMU, and LiDAR Sensor Fusion for Vehicle Localization Using Resilience Engineering Theory

2023-04-11
2023-01-0576
Practical applications of recently developed sensor fusion algorithms perform poorly in the real world due to a lack of proper evaluation during development. Existing evaluation metrics do not properly address a wide variety of testing scenarios. This issue can be addressed using proactive performance measurements such as the tools of resilience engineering theory rather than reactive performance measurements such as root mean square error. Resilience engineering is an established discipline for evaluating proactive performance on complex socio-technical systems which has been underutilized for automated vehicle development and evaluation. In this study, we use resilience engineering metrics to assess the performance of a sensor fusion algorithm for vehicle localization. A Kalman Filter is used to fuse GPS, IMU and LiDAR data for vehicle localization in the CARLA simulator.
Technical Paper

Effect of Split-Injection Strategies on Engine Performance and Emissions under Cold-Start Operation

2023-04-11
2023-01-0236
The recently concluded partnership for advancing combustion engines (PACE) was a US Department of Energy consortium involving multiple national laboratories focused on addressing key efficiency and emission barriers in light-duty engines. Generation of detailed experimental data and modeling capabilities to understand and predict cold-start behavior was a major pillar in this program. Cold-start, as defined by the time between first engine crank and three-way catalyst light-off, is responsible for a large percentage of NOx, unburned hydrocarbon, and particulate matter emissions in light-duty engines. Minimizing emissions during cold-start is a trade-off between achieving faster three-way catalyst light-off, and engine out emissions during that period. In this study, engine performance, emissions, and catalyst warmup potential were monitored while the engine was operated using a single direct injection (baseline case) as well as a two-way-equal-split direct injection strategy.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Journal Article

Real-Time Estimation of Perception Sensor Misalignment in Autonomous Vehicles

2023-04-11
2023-01-0059
Autonomous vehicles rely upon accurate information about their surrounding environment to perform safe operational planning. The environment sense and perception system normally produces camera image data and LiDAR point cloud data that are processed and then fused to obtain a better perception of the environment than is possible from either alone. The accuracy of the fused data depends upon knowledge of the position of each sensor on the ego vehicle. Vehicle damage, improper sensor installation, sensor mount deformation, mount movement excited by vehicle motion, and/or other situations can result in an unexpected position of the sensor. This error adds uncertainty into the sensor measurement fusion that is normally not accounted for. LiDAR translational offset and angular orientation misalignment errors are investigated for correction.
Journal Article

Designing Dynamic Wireless Power Transfer Corridors for Heavy Duty Battery Electric Commercial Freight Vehicles

2023-04-11
2023-01-0703
The use of wireless power transfer systems, consisting of inductive electrical coils on the vehicle and the power source may be designed for dynamic operations where the vehicle will absorb energy at highway speeds from transmitting coils in the road. This has the potential to reduce the onboard energy storage requirements for vehicles while enabling significantly longer missions. This paper presents an approach to architecting a dynamic wireless power transfer corridor for heavy duty battery electric commercial freight vehicles. By considering the interplay of roadway power capacity, roadway and vehicle coil coverage, seasonal road traffic loading, freight vehicle class and weight, vehicle mobility energy requirements, on-board battery chemistry, non-electrified roadway vehicle range requirements, grid capacity, substation locations, and variations in electricity costs, we minimize the vehicle TCO by architecting the electrified roadway and the vehicle battery simultaneously.
Technical Paper

Higher Accuracy and Lower Computational Perception Environment Based Upon a Real-time Dynamic Region of Interest

2022-03-29
2022-01-0078
Robust sensor fusion is a key technology for enabling the safe operation of automated vehicles. Sensor fusion typically utilizes inputs of cameras, radars, lidar, inertial measurement unit, and global navigation satellite systems, process them, and then output object detection or positioning data. This paper will focus on sensor fusion between the camera, radar, and vehicle wheel speed sensors which is a critical need for near-term realization of sensor fusion benefits. The camera is an off-the-shelf computer vision product from MobilEye and the radar is a Delphi/Aptive electronically scanning radar (ESR) both of which are connected to a drive-by-wire capable vehicle platform. We utilize the MobilEye and wheel speed sensors to create a dynamic region of interest (DROI) of the drivable region that changes as the vehicle moves through the environment.
Journal Article

Tire Track Identification: A Method for Drivable Region Detection in Conditions of Snow-Occluded Lane Lines

2022-03-29
2022-01-0083
Today’s Advanced Driver Assistance Systems (ADAS) predominantly utilize cameras to increase driver and passenger safety. Computer vision, as the enabler of this technology, extracts two key environmental features: the drivable region and surrounding objects (e.g., vehicles, pedestrians, bicycles). Lane lines are the most common characteristic extracted for drivable region detection, which is the core perception task enabling ADAS features such as lane departure warnings, lane-keeping assistance, and lane-centering. However, when subject to adverse weather conditions (e.g., occluded lane lines) the lane line detection algorithms are no longer operational. This prevents the ADAS feature from providing the benefit of increased safety to the driver. The performance of one of the leading computer vision system providers was tested in conditions of variable snow coverage and lane line occlusion during the 2020-2021 winter in Kalamazoo, Michigan.
Technical Paper

Artificial Neural Networks for In-Cycle Prediction of Knock Events

2022-03-29
2022-01-0478
Downsized turbocharged engines have been increasingly popular in modern light-duty vehicles due to their fuel efficiency benefits. However, high power density in such engines is achieved thanks to high in-cylinder pressure and temperature conditions that increase knock propensity. Next-cycle control has been studied as a method to reduce the damaging effects of knock by operating the engine in a low knock probability condition. This exploratory study looks at the feasibility of in-cycle knock prediction as a tool for advanced knock control algorithms. A methodology is proposed to 1) choose in-cycle features of the pressure trace that highly correlate with knock events and 2) train artificial neural networks to predict in-cycle knock events before knock onset. The methodology was validated at different operating conditions and different levels of generalization. Precision and recall were used as metrics to evaluate the binary classifier.
Technical Paper

Performance of Virtual Torque Sensor for Heavy Duty Truck Applications

2022-03-29
2022-01-0625
Automotive companies are constantly looking to increase the fuel efficiency, shift quality, passenger comfort, and to reduce wear and tear on the components. Most of these aspects depend on the accuracy of torque used for transmission control, which determines the required operational gear position at a given speed and road conditions. Currently, SAE J-1939 CAN bus torque estimation relies on steady state maps that are generated during the calibration of the engine for different speeds and loads. In this paper we report the development of a Virtual Flywheel Torque Sensor (VFTS) useful for real time torque measurement based on an engine speed harmonics analysis. The VFTS uses a signal from the flywheel speed sensor to estimate the flywheel angular acceleration, which and provides a proportional torque value which corresponds to torque at the flywheel.
X