Refine Your Search

Topic

Search Results

Journal Article

Automotive Brake Hose Fluid Consumption Characteristics and Its Effects on Brake System Pedal Feel

2010-04-12
2010-01-0082
During the automotive brake system design and development process, a large number of performance characteristics must be comprehended, assessed, and balanced against each other and, at times, competing performance objectives for the vehicle under development. One area in brake development that is critical to customer acceptance due to its impact on a vehicle's perceived quality is brake pedal feel. While a number of papers have focused on the specification, quantification and modeling of brake pedal feel and the various subsystem characteristics that affect it, few papers have focused specifically on brake corner hoses and their effect on pedal feel, in particular, during race-track conditions. Specifically, the effects of brake hose fluid consumption pedal travel and brake system response is not well comprehended during the brake development process.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Technical Paper

Lead-time Reduction in Stamping CAE and Die Face Development using Massively Parallel Processing in Forming Simulations

2007-04-16
2007-01-1678
Since 1997, General Motors Body Manufacturing Engineering - Die Engineering Services (BME-DES) has been working jointly with our software vendor to develop and implement a parallel version of stamping simulation software for mass production analysis applications. The evolution of this technology and the insight gained through the implementation of DMP/MPP technology as well as performance benchmarks are discussed in this publication.
Technical Paper

Evaluation of a High Speed, High Resolution Gas Chromatography Instrument for Exhaust Hydrocarbon Speciation

2005-04-11
2005-01-0683
The ozone forming potential (OFP) and specific reactivity (SR) of tailpipe exhaust are among the factors that determine the environmental impact of a motor vehicle. OFP and SR measurements require a lengthy determination of about 190 non-methane hydrocarbon species. A rapid gas chromatography (GC) instrument has been constructed to separate both the light (C2 - C4) and the midrange (C5 - C12) hydrocarbons in less than 10 minutes. The limit of detection is about 0.002 parts per million carbon (ppmC). Thirty exhaust samples from natural gas vehicles (NGV's) were analyzed to compare the rapid GC method with the standard GC method, which required 40-minute analyses on two different instruments. In general, evaluation of the commercial prototype from Separation Systems, Inc., indicates that a high speed, high resolution gas chromatograph can meet the need for fast, efficient exhaust hydrocarbon speciation.
Technical Paper

A Bursting Failure Criterion for Tube Hydroforming

2002-03-04
2002-01-0794
Fundamental differences exist between sheet metal forming and hydroforming processes. Sheet metal forming is basically a one step metal fabrication process. Almost all plastic deformation of an originally flat blank is introduced when the punch is moved normal to a clamped sheet metal. Hydroforming, however, consists of multiple steps of tube making, pre-bending, crushing, pressurization, etc. Each of the above mentioned steps can introduce permanent plastic deformations. The forming limit diagram obtained for sheet metal forming may or may not be used in hydroforming evaluations. A failure criterion is proposed for predicting bursting failures in tube hydroforming. The tube material's stress-strain curve, obtainable from uniaxial tensile test and subjected to some postulations under large stress/strain states, is used in judging the failure.
Technical Paper

Performance of Coatings for Underbody Structural Components

2001-03-05
2001-01-0363
The Auto/Steel Partnership established the Light Truck Frame Project Group in 1996 with two objectives: (a) to develop materials, design and fabrication knowledge that would enable the frames on North American OEM (original equipment manufacturer) light trucks to be reduced in weight, and (b) to improve corrosion resistance of frames on these vehicles, thereby allowing a reduction in the thickness of the components and a reduction in frame weight. To address the issues relating to corrosion, a subgroup of the Light Truck Frame Project Group was formed. The group comprised representatives from the North American automotive companies, test laboratories, frame manufacturers, and steel producers. As part of a comprehensive test program, the Corrosion Subgroup has completed tests on frame coatings. Using coated panels of a low carbon hot rolled and pickled steel sheet and two types of accelerated cyclic corrosion tests, seven frame coatings were tested for corrosion performance.
Technical Paper

Technical Potential for Thermally Driven Mobile A/C Systems

2001-03-05
2001-01-0297
Aqua-ammonia absorption refrigeration cycle and R-134a Vapor jet-ejector refrigeration cycle for automotive air-conditioning were studied and analyzed. Thermally activated refrigeration cycles would utilize combustion engine exhaust gas or engine coolant to supply heat to the generator. For the absorption system, the thermodynamic cycle was analyzed and pressures, temperatures, concentrations, enthalpies, and mass flow rates at every point were computed based on input parameters simulate practical operating conditions of vehicles. Then, heat addition to the generator, heat removal rates from absorber, condenser, and rectifying unit, and total rejection heat transfer area were all calculated. For the jet-ejector system, the optimum ejector vapor mass ratio based on similar input parameters was found by solving diffuser's conservation equations of continuity, momentum, energy, and flow through primary ejector nozzle simultaneously.
Technical Paper

The Bulge of Tubes and a Failure Criterion for Tube Hydroforming

2001-03-05
2001-01-1132
The bulge test in hydroforming is a simple fundamental experiment used to obtain basic knowledge in tube expansion. The results can be used to assist design and manufacturing of hydroformed automotive parts. It also can be used to develop a failure criterion for tubes in hydroforming. For these purposes, a section of a long unsupported tube with fixed ends was simulated numerically to obtain the mechanical states of the tube subjected to internal pressure. Steel and aluminum tubes are used. For the bulge tests, the internal pressure reaches a maximum and then decreases in value without failure while the stress, strain and volume of the tube keep increasing. A failure criterion for the bursting of a tube is proposed based on the stress-strain curve of the material.
Technical Paper

The Effects of Head Gasket Geometry on Engine-Out HC Emissions from S.I. Engines

1999-10-25
1999-01-3580
This study evaluated multi-layer steel and composite head gaskets of various thicknesses (0.43 to 1.5 mm) and fire-ring diameters to determine the influence of head gasket crevices on engine-out hydrocarbon (HC) emissions. The upper limit in the percent reduction in HC emissions from gasket-design modifications is estimated to be about 15%. At part-load conditions, the lowest HC emissions were measured for head-gasket thickness of about 1 mm. Significantly smaller thicknesses of the order of 0.4 mm result in an increase in HC emissions. Substantial hydrocarbon-emissions advantage may be realized by minimizing the gasket-to-cylinder bore offset.
Technical Paper

Application of Hydroformed Aluminum Extrusions to Vehicle Sub-Frame with Varied Wall Thickness

1999-09-28
1999-01-3180
In a typical hydroforming operation, a round tube of constant wall thickness is bent into the overall shape desired for the final part, then placed between a pair of dies. Despite some small percentage of stretch that may occur as the tube expands, the wall thickness in the original tube is therefore substantially constant at all points. In some circumstances, a part is locally thickened or reinforced for extra strength. Normally, this is achieved by using a separate piece of reinforcement at selected location. In this paper, it is intended to present a unique method to achieve an optimal structural design allowing thin or thick gages where required along its cross-section. This is done via hydroforming an aluminum extrusion tube to an optimal frame structure having varied wall thickness to satisfy various loading requirements at a minimum weight. The engine cradle is used as an example to demonstrate this methodology.
Technical Paper

Impact of Engine Design on Vehicle Heating System Performance

1997-05-19
971839
A global thermal model of a vehicle powertrain is used to quantify how different engine design and powertrain calibration strategies influence the performance of a vehicle heating system. Each strategy is evaluated on its ability to improve the warm-up and heat rejection characteristics of a small-displacement, spark-ignition engine while minimizing any adverse effect on fuel consumption or emissions. An energy audit analysis shows that the two strategies having the greatest impact on heating system performance are advancing the spark and forcing the transmission to operate in a lower gear. Changes in head mass, exhaust port diameter, and coolant flow rate influence the coolant warm-up rate but have relatively little effect on steady state heat transfer at the heater core.
Technical Paper

Counter-Gravity Casting Process for Making Thinwall Steel Exhaust Manifolds

1997-02-24
970920
Casting technology developmentshave led to a manufacturing process that allows the casting of thin wall (2-3mm) heat resistant ferritic stainless steel exhaust manifolds which can replace stamped and tubular weldments as well as iron castings where temperature requirements are increased. This casting process combines the thin wall and clean metal benefits of the counter gravity, vacuum-assist casting process using thin, light-weight bonded sand molds supported by vacuum-ridgidized sand. This combination is called the LSVAC (Loose Sand Vacuum Assisted Casting) process, a patented process. This process will significantly contribute to the growth of near-net shape steellstainless steel castings for automotive and allied industries. For exhaust manifolds, a modified grade of ferritic stainless steel with good oxidation resistance to 950°C in high dew point synthetic exhaust gas atmospheres was developed.
Technical Paper

Dual Fan Alternator Design Analysis

1996-02-01
960272
Component operating temperatures affect both the reliability and performance of automotive alternators. It is desirable to keep the rectifier bridge and regulator temperatures below 175 C because of the semiconductors contained in this area. At temperatures greater than this, expected lifespans have been observed to decay exponentially [1]. The air flow field surrounding an alternator and component temperature fields were investigated with Computational Fluid Dynamics (CFD) simulations. The objectives of the simulations were to examine the velocity field for the flow passage and the temperature fields for the components. Design proposals have been made to improve the air flow and to reduce the operating temperature. An initial investigation was performed by setting an alternator in a test configuration and applying the appropriate heat generation for each component. The high temperatures in the alternator components occurred in the stator and the rectifier.
Technical Paper

Rear Full Overlap High Speed Car-to-Car Impact Simulation

1995-04-01
951085
A rear full overlap car-to-car high speed impact simulation using the DYNA3D Finite Element Software was performed to examine the crush mode for rear structure of a vehicle and to observe the effect of rear bumper system in order to maintain the fuel system integrity. The study was conducted first for two different bumper system configurations, namely: (1) validating the model for struck vehicle with steel rear bumper system, (2) simulating rear end collision with composite rear bumper system attached to the rear rails of struck vehicle. Later a third simulation of the model was conducted with a viable design modification to the composite bumper system for improved crashworthiness. It was identified that a more comprehensive FEA model of the bullet car including front end structure, powertrain components, cooling system and other components which constitute the load paths should be incorporated in the analysis to obtain more meaningful correlation and crashworthiness prediction.
Technical Paper

Formability of Mash Seam Welded Blanks: Effects of Welding Set-Up Conditions

1995-02-01
950923
It is known that the formability of tailored welded blanks depends on the welding set-up conditions. Little information is available on the correlation between the formability of welded blanks and weld set-up conditions. In this investigation, effects of mash seam welding parameters of weld current, weld force, material overlap and planish on formability performance of welded blanks are studied. The systematic design of experiments approach is used to identify the key weld parameters influencing the formability performance of welded blanks. It is found that high weld force decreases formability of welded blanks and high weld force coupled with a small material overlap results in very low forming limit of the weld zone. Weld current has little effect on formability of welded blanks and planishing significantly reduces it. Overall, the mash seam welded blanks produced with appropriate weld set-up conditions are robust with respect to formability.
Technical Paper

Evaluation of a Dynamic Explicit Finite Element Code for Binder Forming Calculations

1995-02-01
950693
In order to develop a binder forming analysis model based on contact principle of mechanics and to search for an accurate finite element computer code to analyze the model, ABAQUS/Explicit was evaluated using a benchmark example of a step-die. Because the step-die is a quasi-static problem and ABAQUS/Explicit is a dynamic finite element code, we are particularly interested in avoiding oscillations of the blank in the die cavity after the binder is closed. The study reveals that the oscillations can be eliminated and an asymptotic solution obtained if the die close speed is not too high. The optimum die close time for the benchmark is obtained based on the efficiency of computing and accuracy of the solution. The issues of oscillations and asymptotic solutions related to analyzing a quasi-static binder forming problem by a dynamic finite element code are settled in this paper.
Technical Paper

Influence of Laser Welding Parameters on Formability and Robustness of Blank Manufacturing: An Application to a Body Side Frame

1995-02-01
950922
A design of experiments is used to study the effect of laser weld parameters on formability of welded blanks for two different material combinations of cold rolled (bare) steel to cold rolled steel and cold rolled steel to hot dipped galvanized steel. Critical weld parameters influencing the formability of welded blanks are identified and the optimum weld set-up condition is obtained based on formability performance and consistency of formability for laser welded blanks. The results are applied to an automotive body side frame. The robustness of welded blank production is also assessed and the final welded set-up condition for the body side frame is obtained based on both the formability of welded blanks and the robustness of welded blank production. The body side frame is successfully made from the welded blanks with this final weld set-up condition.
Technical Paper

A Connectorized Passive Optical Star for Automotive Networking Applications

1994-03-01
940798
This paper introduces for the first time a fully connectorized passive optical star for use with plastic optical fiber that addresses all automotive application requirements. A unique mixing element is presented that offers linear expandability, uniformity of insertion loss, and packaging flexibility. The star is constructed of all plastic molded components to make it low cost and produceable in high volume and is single-ended to facilitate vehicle integration. The star is connectorized to facilitate assembly into the vehicle power and signal distribution system.
Technical Paper

Using a Geometric Toolkit to Link Finite Element Calculations in Sheet Metal Forming Analysis

1994-03-01
940748
Sheet metal forming of automobile body panel consists of two processes performed in series: binder forming and punch forming. Due to differences in deformation characteristics of the two forming processes, their analysis methods are different. The binder wrap surface shape and formed part shape are calculated using different mathematical models and different finite element codes, e.g., WRAPFORM and PANELFORM, respectively. The output of the binder forming analysis may not be directly applicable to the subsequent punch forming analysis. Interpolation, or approximation, of the calculated binder wrap surface geometry is needed. This surface representation requirement is carried out using computer aided geometric design tools. This paper discusses the use of such a tool, SURFPLAN, to link WRAPFORM and PANELFORM calculations.
Technical Paper

Three-Dimensional Navier-Stokes Analysis of Front End Air Flow for a Simplified Engine Compartment

1992-06-01
921091
A computer code for predicting cooling air flow through the radiator and the condenser has been developed. The Reynolds-averaged Navier-Stokes equations, together with the porous flow model for the radiator and the condenser, were solved to simulate front end air flow and the engine compartment flow simultaneously. These transport equations were discretized based on a finite-volume method in a transformed domain. The computational results for a simplified engine compartment showed overall flow information, such as the cooling air flow through the radiator and the condenser, the effects of an air dam, and the effects of fresh air vents near the top of the radiator and the condenser. Comparison of the available experimental data with the analysis showed excellent prediction of the cooling air flow through the radiator and the condenser.
X