Refine Your Search

Topic

Author

Search Results

Technical Paper

Performance Evaluation of an Eco-Driving Controller for Fuel Cell Electric Trucks in Real-World Driving Conditions

2024-04-09
2024-01-2183
Range anxiety in current battery electric vehicles is a challenging problem, especially for commercial vehicles with heavy payloads. Therefore, the development of electrified propulsion systems with multiple power sources, such as fuel cells, is an active area of research. Optimal speed planning and energy management, referred to as eco-driving, can substantially reduce the energy consumption of commercial vehicles, regardless of the powertrain architecture. Eco-driving controllers can leverage look-ahead route information such as road grade, speed limits, and signalized intersections to perform velocity profile smoothing, resulting in reduced energy consumption. This study presents a comprehensive analysis of the performance of an eco-driving controller for fuel cell electric trucks in a real-world scenario, considering a route from a distribution center to the associated supermarket.
Technical Paper

Characterization of Embedded Debris Particles on Crankshaft Bearings

2024-04-09
2024-01-2594
Crankshaft bearings function to maintain the lubrication oil films needed to support crankshaft journals in hydrodynamic regime of rotation. Discontinuous oil films will cause the journal-bearing couple to be in a mixed or boundary lubrication condition, or even a bearing seizure or a spun bearing. This condition may further force the crankshaft to break and an engine shutdown. Spun bearings have been identified to be one of the top reasons in field returned engines. Excessive investigations have found large, embedded hard debris particles on the bearings are inevitably the culprit of destroying continuity of the oil films. Those particles, in particular the suspicious steel residues, in the sizes of hundreds of micrometers, are large enough to cause oil film to break, but rather fine and challenging for materials engineers to characterize their metallurgical features. This article presents the methodology and steps of debris analyses on bearings at different stages of engine build.
Technical Paper

Dynamic Characterization of a Twin Plate Torque Converter Clutch During Controlled Slip

2024-04-09
2024-01-2715
This paper details testing for torque converter clutch (TCC) characterization during steady state and dynamic operation under controlled slip conditions on a dynamometer setup. The subject torque converter under test is a twin plate clutch with a dual stage turbine damper without a centrifugal pendulum absorber. An overview is provided of the dynamometer setup, hydraulic system and control techniques for regulating the apply pressure to the torque converter and clutch. To quantify the performance of the clutch in terms of control stability, pressure to torque relationship and the dynamic behavior during apply and release, a matrix of oil temperatures, output speeds, input torques, and clutch apply pressures were imposed upon the torque converter.
Technical Paper

A 3-D CFD Investigation of Ball Bearing Weir Geometries and Design Considerations for Lubrication

2024-04-09
2024-01-2439
The study focuses on understanding the air and oil flow characteristics within a ball bearing during high-speed rotation, with a particular emphasis on optimizing frictional heat dissipation and oil lubrication methods. Computational fluid dynamics (CFD) techniques are employed to analyze the intricate three-dimensional airflow and oil flow patterns induced by the motion of rotating and orbiting balls within the bearing. A significant challenge in conducting three-dimensional CFD studies lies in effectively resolving the extremely thin gaps existing between the balls, races, and cages within the bearing assembly. In this research, we adopt the ball-bearing structured meshing strategy offered by Simerics-MP+ to meticulously address these micron-level clearances, while also accommodating the rolling and rotation of individual balls. Furthermore, we investigate the impact of different designs of the lubrication ports to channel oil to other locations compared to the ball bearings.
Technical Paper

Torque Ripple Cancellation to Reduce Electric Motor Noise for Electric Vehicles

2024-04-09
2024-01-2215
Electric motor whine is a major NVH source for electric vehicles. Traditional mitigation methods focus on e-motor hardware optimization, which requires long development cycles and may not be easily modified when the hardware is built. This paper presents a control- and software-based strategy to reduce the most dominant motor order of an IPM motor for General Motors’ Ultium electric propulsion system, using the patented active Torque Ripple Cancellation (TRC) technology with harmonic current injection. TRC improves motor NVH directly at the source level by targeting the torque ripple excitations, which are caused by the electromagnetic harmonic forces due to current ripples. Such field forces are actively compensated by superposition of a phase-shifted force of the same spatial order by using of appropriate current.
Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

Electric Motor Noise Reduction with Stator Mounted NVH Insert Ring

2024-04-09
2024-01-2205
Electric motor noise mitigation is a challenge in electric vehicles (EVs) due to the lack of engine masking noise. The design of the electric motor mounting configuration to the motor housing has significant impacts on the radiated noise of the drive unit. The stator can be bolted or interference-fit with the housing. A bolted stator creates motor whine and vibration excited by the motor torque ripple at certain torsional resonance frequencies. A stator with interference fit configuration stiffens the motor housing and pushes resonances to a higher frequency range, where masking noise levels are higher at faster vehicle speeds. However, this comes with additional cost and manufacturing process and may impact motor efficiency due to high stress on stators. In this paper, a thin sheet metal NVH ring is developed as a tunable stiffness device between the stator and the motor housing. It is pre-compressed and provides additional torsional rigidity to mitigate torsional excitations.
Technical Paper

A 3-D CFD Study of the Lubricating Oil Flow Path in a Hybrid Vehicle Transmission System

2024-04-09
2024-01-2635
Effective design of the lubrication path greatly influences the durability of any transmission system. However, it is experimentally impossible to estimate the internal distribution of the automotive transmission fluid (ATF) to different parts of the transmission system due to its structural complexities. Hybrid vehicle transmission systems usually consist of different types of bearings (ball bearings, thrust bearings, roller bearings, etc.) in conjunction with gear systems. It is a perennial challenge to computationally simulate such complicated rotating systems. Hence, one-dimensional models have been the state of the art for designing these intricate transmission systems. Though quantifiable, the 1D models still rely heavily on some testing data. Furthermore, HEVs (hybrid electric vehicles) desire a more efficient lubrication system compared to their counterparts (Internal combustion engine vehicles) to extend the range of operation on a single charge.
Technical Paper

Virtual Development of Control Coordinator for Engine and Aftertreatment Architecture Equipped with Diesel Fuel Burner

2023-08-28
2023-24-0103
Heating devices are effective technologies to strengthen emission robustness of AfterTreatment Systems (ATS) and to guarantee emission compliance in the new boundaries given by upcoming legislations. Moreover, they allow to manage the ATS warm-up independently from engine operating conditions, thereby reducing the need for specific combustion strategies. Within heating devices, an attractive solution to provide the required thermal power without mandating a 48V platform is the fuel burner. In this work, a model-based control coordinator to manage the interaction between engine, ATS and fuel burner device has been developed, virtually validated, and optimized. The control function features a burner model and a control logic to deliver the needed amount of thermal energy, while ensuring ATS hardware protection.
Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

Conducting Comparisons of Multi-Body Dynamics Solvers with a Goal of Establishing Future Direction

2023-04-11
2023-01-0166
As passenger vehicle design evolves and accelerates, the use of multi-body dynamics solvers has proven to be invaluable in the engineering workflow. MBD solvers allow engineers to build virtual vehicle models that can accurately simulate vehicle responses and calculate internal forces, which previously could only be assessed using physical prototype builds with hundreds of measurement transducers. Evaluation and selection of solvers within an engineering environment is inherently a multi-dimensional activity that can include ease of use, retention of previously developed expertise, accuracy, speed, and integration with existing analysis processes. We discuss here some of the challenges present in developing capability and accumulating data to support each of these criteria. Developing a pilot model that is capable of being applied to a comprehensive set of use cases, and then verifying those use cases, required significant project management activity.
Technical Paper

Power Loss Studies for Rolling Element Bearings Subject to Combined Radial and Axial Loading

2023-04-11
2023-01-0461
The power loss of bearings is a significant factor in the overall efficiency in a drive unit system. Such bearings are subject to combined radial and axial loading needed to support the gear mesh forces. An experimental methodology has been developed to perform sets of power loss measurements on TRB, 4PCBB and DGBB. These measurements were performed under a variety of speed, load, temperature, and lubrication conditions. The loss behaviors of these types of the bearings are discussed, along with the tradeoff of different bearing arrangements for the fuel economy cycles. Several power loss models are employed to assess the accuracy of the estimations as compared to the experimental measurements. At low speed some models showed good correlations for TRB and DGBB, while at higher speed, they start deviating from the testing results. A higher fidelity model for estimating the losses at high speed, especially speed around 20krpm and beyond, needs to be developed.
Technical Paper

Vehicle Noise Sensitivity to Different Levels of Taper Wheel Bearing Brinell Damage for Body-on-Frame Passenger Vehicles

2022-09-19
2022-01-1192
This paper reviews the relationship between taper wheel bearing damage and vehicle noise and vibration for a body-on-frame pickup truck and a body-on-frame SUV. In addition to understanding how the different levels of bearing damage relate to vehicle noise, it also discusses the level of noise versus the damaged bearing’s position in the vehicle. For this study, the wheel bearing supplier provided front and rear bearings with various amounts of Brinell damage to the bearing raceways. The different bearings were evaluated subjectively for noise in the vehicle. After vehicle testing, the bearing raceway Brinell depths were measured to correlate the level of bearing damage to vehicle noise. The study shows the relationship between bearing Brinell dent depth and vehicle noise for body-on-frame light trucks and SUVs. The noise was most apparent in vehicles between 45 and 60 mph. For bearings with moderate levels of damage, steering inputs were required to hear noise.
Journal Article

Dual Transfer Function Approach to Analyze Low Frequency Brake Noise without Comprehending Friction Behavior in Advance

2022-09-19
2022-01-1176
Analyzing low frequency brake noise (< 300Hz) has been challenging due to the difficulty associated with calculating dynamic friction behavior and its multiple structure-borne noise transfer paths. In theory, it is possible to simulate sound pressure level inside the cabin by calculating a transfer function between friction excitation, which is on the interface between rotor and pads, and cabin acoustic response, and by multiplying dynamic friction force at the rotor-pad interface to that transfer function. However, calculating the dynamic friction forces when brake noise occurs has been one of the most challenging research topics in the brake community. This paper describes a novel concept to simulate sound pressure level inside the cabin without knowing the dynamic friction forces at the rotor-pad interface in advance.
Technical Paper

Aftertreatment Layouts Evaluation in the Context of Euro 7 Scenarios Proposed by CLOVE Abstract

2022-06-14
2022-37-0008
Euro 7/VII regulations are currently under discussion and are expected to be the last big regulatory step in Europe. From available documentation, it is clear the aim of further regulating the extended conditions of use which are still responsible of high emission events (e. g. cold start or altitude) as well as regulating secondary emissions such as NH3, N2O, CH4, Aldehydes (HCHO). Even if not completely fixed yet, the EU7 limits will be challenging for internal combustion engines and even more for Diesel. Despite a consistent reduction of market share, Diesel engines are expected to remain a significant portion in certain sectors such as Heavy duty (HD) and Light-commercial vehicle (LCV) for some decades. In order to reach the new limits being proposed, besides minimizing engine-out emissions, Diesel powertrain will need an aftertreatment system able to work at very high efficiency right after engine start and in almost every working and environmental condition.
Technical Paper

An Accurate Analysis Method to Calculate Planetary Gear Set Load Sharing under Non-Torque Load

2022-03-29
2022-01-0653
Given their high-power density, large range of speed change, and reputation of being quieter than counter-shaft gear sets, planetary gear sets (PGS) have advantages to be applied in electric vehicle (EV) applications. Since electric drive unit (EDU) designs are often subject to accelerated development timelines with more versatile gear set layouts than conventional automotive transmissions, accurate prediction of PGS load sharing is needed. In the past, PGS load sharing imbalance used to be considered as a gear set problem focusing only on the effect to gear performance. Finding a closed-form formula has been a focus in gear design. However, early bearing failure in wind turbine gearboxes exposed the limitation of this strategy. With extensive field and laboratory testing, engineers started to notice that load sharing imbalance is essentially a system issue. Non-torque loads on PGS should be considered in the estimation by a gearbox system model.
Technical Paper

Automotive Turbocharger Rotor Optimization Using Machine Learning Technique

2022-03-29
2022-01-0216
Turbochargers are widely employed in internal combustion engines, in both, diesel and gasoline vehicle, to boost the power without any extra fuel usage. Turbocharger comes in different sizes based upon the boost pressure to increase. Capacity of turbocharger are available in great range in the market which are designed to match the requirement. From structural point of view, key component of an automotive turbocharger is rotor. This rotor consists of compressor wheel, turbine wheel, shaft and bearing (journal/ball) mainly. In industries, design & development of turbocharger rotor for its dynamic characteristics is done using virtual engineering technique (Computer Aided Engineering). Multibody dynamic (MBD) analysis simulation is one of the best approaches which is used to study the rotor in great details. In this current MBD procedure fluid-structure interaction problem is solved by modelling oil film in the journal bearing and solving it using “Reynolds equation”.
Technical Paper

Multidimensional CFD Studies of Oil Drawdown in an i-4 Engine

2022-03-29
2022-01-0397
A computational study based on unsteady Reynolds-Averaged-Navier-Stokes that resolves the gas-liquid interface was performed to examine the unsteady multiphase flow in a 4 cylinder Inline (i-4) engine. In this study, the rotating motion of the crankshaft and reciprocating motion of the pistons were accounted for to accurately predict the oil distribution in various parts of the engine. Three rotational speeds of the crankshaft have been examined: 1000, 2800, and 4000 rpm. Of particular interest is to examine the mechanisms governing the process of oil drawdown from the engine head into the case. The oil distributions in other parts of the engine have also been investigated to understand the overall crankcase breathing process. Results obtained show the drawdown of oil from the head into the case to be strongly dependent on the venting strategy for the foul air going out of the engine through the PCV system.
Technical Paper

Potential towards CI Engines with Lower NOx Emissions through Calibration Optimization and Low-Carbon Fuels

2022-03-29
2022-01-0511
The continuous improvement of internal combustion engines (ICEs) with strategies that can be applied to existing vehicle platforms, either directly or with minor modifications, can improve efficiency and reduce GHG emissions to help achieve Paris climate targets. Low carbon fuels (LCF) as diesel substitutes for light and heavy-duty vehicles are currently being considered as a promising alternative to reduce well-to-wheel (WTW) CO2 emissions by taking advantage of the carbon offset their synthesis pathway can promote, which could capture more CO2 than it releases into the atmosphere. Additionally, some low carbon fuels, like OMEx blends, have non-sooting properties that can significantly improve the NOx-soot tradeoff. The current work studies the calibration optimization of a EU6D-TEMP light-duty engine using various LCFs with different renewable contents with the goal of reduced NOx emissions.
Technical Paper

Pressure Drop Performance of Gasoline Particulate Filters - Experimental and Modeling Study

2022-03-29
2022-01-0559
Gasoline Particulate Filters (GPF) are widely employed in exhaust aftertreatment systems of gasoline engines to meet the stringent particulate emissions requirements of Euro6 and China6 standard. While providing an effective filtration of particles, the GPF increases the engine backpressure as a penalty due to accumulation of soot. To clean the accumulated soot, periodical burning of soot is achieved by the onboard control models and lot of effort is spent on calibrating the same. In order to understand pressure drop behavior across GPF, detailed pressure drop measurements were conducted at clean, soot and ash loaded conditions at engine dynamometer and at vehicle conditions. Effect of degreening of GPF was studied to take into account any change in pressure drop characteristics of onboard control models during GPF aging in the vehicle.
X