Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Gasoline Simulated Distillation Profiles of U.S. Market Gasoline and Impacts on Vehicle Particulate Emissions

2023-10-31
2023-01-1632
A gasoline’s distillation profile is directly related to its hydrocarbon composition and the volatility (boiling points) of those hydrocarbons. Generally, the volatility profiles of U.S. market fuels are characterized using a very simple, low theoretical plate distillation separation, detailed in the ASTM D86 test method. Because of the physical chemistry properties of some compounds in gasoline, this simple still or retort distillation has some limitations: separating azeotropes, isomers, and heavier hydrocarbons. Chemists generally rely on chromatographic separations when more detailed and precise results are needed. High-boiling aromatic compounds are the primary source of particulate emissions from spark ignited (SI), internal combustion engines (ICE), hence a detailed understanding and high-resolution separation of these heavy compounds is needed.
Technical Paper

Correlation of Chemical Compositions and Fuel Properties with Fuel Octane Rating of Gasoline Containing Ethanol

2011-08-30
2011-01-1986
With increasing use of ethanol in automotive fuel in recent years, which can be made from renewable feedstocks, the chemical composition of gasoline is changed. The compositional change results in many changes in fuel properties. One key property is the octane rating of gasoline. Market data has shown the shifts of octane rating (antiknock index or AKI) upward due to more penetration of E10 gasoline in the US market. However, the increase in research octane is more pronounced as compared to motor octane, therefore the increase in octane sensitivity in gasoline. Refineries have used the change in octane due to ethanol contribution by sending so called sub-grade gasoline to terminals expecting the final blend after mixing with ethanol to meet the market requirement in octane. Thus the octane rating of the final blend will largely depend on the sub-grade gasoline composition and ethanol.
X