Refine Your Search

Topic

Author

Search Results

Technical Paper

Distortion Reduction in Roller Offset Forming Using Geometrical Optimization

2024-04-09
2024-01-2857
Roller offsetting is an incremental forming technique used to generate offset stiffening or mating features in sheet metal parts. Compared to die forming, roller offsetting utilizes generic tooling to create versatile designs at a relatively lower forming speed, making it well-suited for low volume productions in automotive and other industries. However, more significant distortion can be generated from roller offset forming process resulting from springback after forming. In this work, we use particle swarm optimization to identify the tool path and resulting feature geometry that minimizes distortion. In our approach, time-dependent finite element simulations are adopted to predict the distortion of each candidate tool path using a quarter symmetry model of the part. A multi-objective fitness function is used to both minimize the distortion measure while constraining the minimal radius of curvature in the tool path.
Technical Paper

Maximum Pulling Force Calculation of Permanent Magnet Tractor Motors in Electric Vehicle Applications

2024-04-09
2024-01-2217
In electric vehicle applications, the majority of the traction motors can be categorized as Permanent Magnet (PM) motors due to their outstanding performance. As indicated in the name, there are strong permanent magnets used inside the rotor of the motor, which interacts with the stator and causes strong magnetic pulling force during the assembly process. How to estimate this magnetic pulling force can be critical for manufacturing safety and efficiency. In this paper, a full 3D magnetostatic model has been proposed to calculate the baseline force using a dummy non-slotted cylinder stator and a simplified rotor for less meshing elements. Then, the full 360 deg model is simplified to a half-pole model based on motor symmetry to save the simulation time from 2 days to 2 hours. A rotor position sweep was conducted to find the maximum pulling force position. The result shows that the max pulling force happens when the rotor is 1% overlapping with the stator core.
Technical Paper

Characterization of Embedded Debris Particles on Crankshaft Bearings

2024-04-09
2024-01-2594
Crankshaft bearings function to maintain the lubrication oil films needed to support crankshaft journals in hydrodynamic regime of rotation. Discontinuous oil films will cause the journal-bearing couple to be in a mixed or boundary lubrication condition, or even a bearing seizure or a spun bearing. This condition may further force the crankshaft to break and an engine shutdown. Spun bearings have been identified to be one of the top reasons in field returned engines. Excessive investigations have found large, embedded hard debris particles on the bearings are inevitably the culprit of destroying continuity of the oil films. Those particles, in particular the suspicious steel residues, in the sizes of hundreds of micrometers, are large enough to cause oil film to break, but rather fine and challenging for materials engineers to characterize their metallurgical features. This article presents the methodology and steps of debris analyses on bearings at different stages of engine build.
Technical Paper

Thermomechanical Fatigue Behavior of a Cast Austenitic Stainless Steel

2024-04-09
2024-01-2683
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed.
Technical Paper

Development of Robust Traction Power Inverter Residing in Integrated Power Electronics for Ultium Electric Vehicles

2024-04-09
2024-01-2211
General Motors (GM) is working towards a future world of zero crashes, zero emissions and zero congestion. It’s “Ultium” platform has revolutionized electric vehicle drive units to provide versatile yet thrilling driving experience to the customers. Three variants of traction power inverter modules (TPIMs) including a dual channel inverter configuration are designed in collaboration with LG Magna e-Powertrain (LGM). These TPIMs are integrated with other power electronics components inside Integrated power electronics (IPE) to eliminate redundant high voltage connections and increase power density. The developed power module from LGM has used state-of-the art sintering technology and double-sided cooled structure to achieve industry leading performance and reliability. All the components are engineered with high level of integration skills to utilize across TPIM variants.
Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

Electric Motor Noise Reduction with Stator Mounted NVH Insert Ring

2024-04-09
2024-01-2205
Electric motor noise mitigation is a challenge in electric vehicles (EVs) due to the lack of engine masking noise. The design of the electric motor mounting configuration to the motor housing has significant impacts on the radiated noise of the drive unit. The stator can be bolted or interference-fit with the housing. A bolted stator creates motor whine and vibration excited by the motor torque ripple at certain torsional resonance frequencies. A stator with interference fit configuration stiffens the motor housing and pushes resonances to a higher frequency range, where masking noise levels are higher at faster vehicle speeds. However, this comes with additional cost and manufacturing process and may impact motor efficiency due to high stress on stators. In this paper, a thin sheet metal NVH ring is developed as a tunable stiffness device between the stator and the motor housing. It is pre-compressed and provides additional torsional rigidity to mitigate torsional excitations.
Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

Perspectives on the Transition from Hardware-Based Validation and Product Evaluation to Virtual Processes

2023-04-11
2023-01-0164
Accelerating product development cycles and incentives to reduce costs in product development are strong motivators to move to virtual development and validation processes. Challenges to moving to a virtual paradigm include a wealth of historical data and context for hardware tests, uncertainty over dependencies, and a lack of a clear path of transition to virtual methods. In this paper we will discuss approaches to understanding the value created by hardware tests and aligning that value to virtual processes. We will also discuss the need for a virtual context to be added to SAE J1739 [1] (DFMEA detection criteria), and how to create paths to maximize the value of virtual assessments. Finally, we will also discuss the cultural and organizational changes required to support.
Technical Paper

Motor Level Torque Ripple Requirement Development for Vehicle Seat Track Acceleration

2023-04-11
2023-01-0565
Torque ripple from electric motor can excite a system resonance perceived as vibration at the vehicle seat track. The CAE simulation procedure was applied to analyze the seat track acceleration excited by electric motor torque ripple. In this study, the transfer function between the electric motor torque and vehicle level seat track acceleration was developed, and it incorporates the control capability and vehicle sensitivity subfunctions. The motor level torque ripple requirement was developed, which can support motor design in early vehicle development stage based on vehicle level criteria. The analysis results obtained for motor level torque ripple requirement shows good agreement with the experimental validation using vehicle test data. The variation study on control capability and vehicle sensitivity was investigated, and the results can help to identify the solution to improve vehicle torque ripple response.
Technical Paper

Prediction of Optimized Design Under Dynamic Loads Using Kriging Metamodel

2022-10-05
2022-28-0385
Stamped components play an important role in supporting various sub-systems within a typical engine and transmission assembly. In some cases, the stamped components will not initially meet the design criteria, and material may need to be added to strengthen it. However, in other cases the component may be overdesigned, and there will be opportunities to reduce mass while still meeting all design criteria. In this latter case, multiple CAE simulations are often performed to enhance the component design by varying design parameters such as thickness, bend radius, material, etc., The conventional process will assess changes in one parameter at a time, while holding other parameters constant. Though this helps in meeting the design criteria, it is often very difficult to produce the best optimized design within the limited time span with this approach. With the aid of Altair-HyperMorph techniques, multiple design parameters can be varied simultaneously.
Technical Paper

CAE Method for Automotive Remote Function Actuator System Range Simulation

2022-03-29
2022-01-0129
Remote Function Actuator (RFA) systems are widely used as the standard solution for conveniently accessing vehicles by remote control. To accelerate product development cycles and reduce engineering costs of physical test, a computer aided engineering (CAE) method has been developed to predict transmission range of the RFA system. Firstly, the detailed computational electromagnetic (CEM) models of the transmitting and receiving antennas were developed. Secondly, the articulated human model and the full vehicle meshed model were introduced to the CEM models to reflect the physical test environment. Lastly, the RFA system range model was built by including both the key fob held by an articulated human body and RFA module installed in the fully meshed vehicle. The transmission range could be extracted when the simulated received power reached the receiving sensitivity of the RFA module.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Journal Article

Application of Brake System Failed State Performance and Reliability Requirements to Brake System Architecting

2021-10-11
2021-01-1267
The modern braking system in the field today may be controlled by over a million lines of computer code and may feature several hundred moving parts. Although modern brake systems generally deliver performance, even with partial failures present in the system, that is well above regulatory minimums, they also have a level of complexity that extends well beyond what the authors of existing regulations had envisioned. Complexity in the braking system is poised for significant increases as advanced technologies such as self-driving vehicles are introduced, and as multiple systems are linked together to provide vehicle-level “features” to the driver such as deceleration (which can invoke service braking, regenerative braking, use of the parking brake, and engine braking). Rigorous safety-case analysis is critical to bring a new brake system concept to market but may be too tedious and rely on too many assumptions to be useful in the early architecting stages of new vehicle development.
Technical Paper

Multiphysics Simulation of Electric Motor NVH Performance with Eccentricity

2021-08-31
2021-01-1077
With the emphasis of electrification in automotive industry, tremendous efforts are made to develop electric motors with high efficiency and power density, and reduce noise, vibration and harshness (NVH). A multiphysics simulation workflow is used to predict the eccentricity-induced noise for GM’s Bolt EV motor. Both static and dynamic eccentricities are investigated along with axial tilt. Analysis results show that these eccentricities play a critical role in the NVH behavior of the motor assembly. Transient electromagnetic (EM) analysis is performed first by extruding 2D stator and rotor sections to form 3D EM models. Sector model is duplicated to form full 360-degree model. Stator is split into three rotated sections to characterize stator skew, and the skew between two sections of rotor and magnets are also modelled. Sinusoidal current is applied and lumped-sum forces on each stator tooth are computed.
Technical Paper

Development of a Lightweight Electric Light Duty Truck Structure

2021-04-06
2021-01-0284
Finding room to package enough energy at today’s battery energy densities, while preserving performance and configuration requirements is a common problem for electric vehicles. This issue was recently addressed at General Motors by a small team utilizing agile concept development methods, constitutive material model development, and performance simulation tools to create a structural strategy for a family of unique electric light duty trucks. The desire to create a flexible architecture rather than a single vehicle, coupled with an underbody dominant, and rectilinear structural design space precluded any great topological novelty, so a basic principles approach was taken instead. A concept was devised whereby conventional truck frame rails were abandoned in favor of a series of three connected box-like structures along the length of the vehicle. For this to work effectively however, stable shear panels were required as a basic building block.
Technical Paper

Application of Casting to Automotive ECU’s

2021-04-06
2021-01-0131
Casting is the ability to let users transfer their favorite videos, music, movies, etc. from their phone to a chosen display. This functionality has become very popular these days, and to the user, it is as simple as clicking a button. This “simple” task is a complex system that requires various independent sources to communicate efficiently and effectively to produce a robust and reliable output. The sending and receiving devices are required to be on the same network - which involves reliable and secure connection. This allows the sending of the URL of the chosen feature to the server provider, which will then connect to the receiver embedded electronics where the authentication process that protects Digital Rights Management (DRM) is established. In the era of developing autonomous and luxury vehicles, this technology has the potential to add a new dimension of in-vehicle entertainment that could come very close to the home experience.
Technical Paper

Porosity Characterization of Cast Al Alloys with X-Ray Computed Tomography andScanning Electron Microscope

2021-04-06
2021-01-0306
Cast Al-Si alloys are widely used in automotive industry to produce structural components, such as engine block and cylinder head, because of the increasing demands in reducing mass for improved fuel efficiency. The fatigue performance of the castings is critical in their application. Porosity is highly detrimental to the fatigue behavior of cast Al-Si alloys. Therefore, accurate measurement of pore sizes is important in order to develop the correlations between porosity and fatigue strength. However, quantification of porosity is challenging and shows large variation depending on the measurement methods, particularly for micro-shrinkage porosity due to the torturous and complex morphology. The conventional metallographic image analysis method in the 2D polished surface often underestimates the actual pore size particularly when the porosity morphology is complex.
Technical Paper

Fracture Limit Curve Development on ABW (Arc Brazing Weld) Considering Joint Efficiency in LS-DYNA3D

2021-04-06
2021-01-0290
Arc brazing welding (ABW) is widely used in automotive vehicle body and chassis structure along with Arc welding - MIG (Metal Inert Gas) or TIG (Tungsten Inert Gas) and spot welds. MIG welding or ABW (Arc Brazing welding) fracture in vehicle development process is one of the critical phenomena in quasi static structural simulation, like Roof Strength, Seat/Belt Anchorage and Child Restraint Anchorage (CRS). MIG/ABW Fracture has an impact on structural performance. Advantages of ABW over MIG weld is made at relatively lower temperatures. Significant advantage is welding thin sheet metal, no melting of parent metal and retains significant physical properties. This characteristic of ABW enables selection of ABW against MIG welded joint on automotive thin sheet metals. Good ABW joint can be as strong or stronger than MIG welded joint. Joint efficiency (JE) is defined as the ratio between the fracture strength of the joint and the fracture strength of parent metal.
Technical Paper

Strain Amount and Strain Path Effects on Instrumented Charpy Toughness of Baked Third Generation Advanced High Strength Steels

2021-04-06
2021-01-0266
Third generation advanced high strength steels (AHSS) that rely on the transformation of austenite to martensite have gained growing interest for implementation into vehicle architectures. Previous studies have identified a dependency of the rate of austenite decomposition on the amount of strain and the associated strain path imposed on the sheet. The rate and amount of austenite transformation can impact the work hardening behavior and tensile properties. However, a deeper understanding of the impact on toughness, and thus crash performance, is not fully developed. In this study, the strain path and strain amounts were systematically controlled to understand the associated correlation to impact toughness in the end application condition (strained and baked). Impact toughness was evaluated using an instrumented Charpy machine with a single sheet v-notch sample configuration.
X