Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Technical Challenges with on Board Monitoring

2024-04-09
2024-01-2597
The proposed Euro 7 regulation includes On Board Monitoring, or OBM, to continuously monitor vehicles for emission exceedances. OBM relies on feedback from existing or additional sensors to identify high emitting vehicles, which poses many challenges. Currently, sensors are not commercially available for all emissions constituents, and the accuracy of available sensors is not capable enough for in use compliance determination. On board emissions models do not offer enough fidelity to determine in use compliance and require new complex model innovation development which will be extremely complicated to implement on board the vehicle. The stack up of multi-component deterioration leading to an emissions exceedance is infeasible to detect using available sensors and models.
Technical Paper

Kinetic Model Development for Selective Catalytic Converter Integrated Particulate Filters

2024-04-09
2024-01-2631
To meet the stringent NOx and particulate emissions requirements of Euro 6 and China 6 standard, Selective Catalyst Reduction (SCR) catalyst integrated with wall flow particulate filter (SCR-DPF) has been found to be an effective solution for the exhaust aftertreatment systems of diesel engines. NOx is reduced by ammonia generated from urea injection while the filter effectively traps and burns the particulate matter periodically in a process called regeneration. The engine control unit (ECU) effectively manages urea injection quantity, timing and soot burning frequency for the stable functioning of the SCR-DPF without impacting drivability. To control the NOx reduction and particulate regeneration process, the control unit uses lookup tables generated from extensive hardware testing to get the current soot load and NOx slip information of SCR-DPF as a function of main exhaust state variables.
Technical Paper

Electric vehicle predictive thermal comfort management with solar load estimation

2024-04-09
2024-01-2607
Electric vehicles (EV) present distinctive challenges compared to ICE (Internal Combustion Engine) powered counterparts. Cabin heating and air-conditioning stand out among them, especially cabin heating in cold weather, owing to its outsized effect on drivable range of the vehicle. Efficient management of the cabin thermal system has the potential to improve vehicle range without compromising passenger comfort. A method to improve cabin thermal system regulation by effectively leveraging the solar load on the vehicle is proposed in this work. The methodology utilizes connectivity and mapping data to predict the solar load over a future time horizon. Typically, the solar load is treated as an unmeasured external disturbance which is compensated with control. It can however be treated as an estimated quantity with potential to enable predictive control. The solar load prediction, coupled with a passenger thermal comfort model, enables preemptive thermal system control over a route.
Technical Paper

Using ALPHA v3.0 to Simulate Conventional and Electrified GHG Reduction Technologies in the MY2022 Light-Duty Fleet

2024-04-09
2024-01-2710
As GHG and fuel economy regulations of light-duty vehicles have become more stringent, advanced emissions reduction technology has extensively penetrated the US light-duty vehicle fleet. This new technology includes not only advanced conventional engines and transmissions, but also greater adoption of electrified powertrains. In 2022, electrified vehicles – including mild hybrids, strong hybrids, plug-ins, and battery electric vehicles – made up nearly 17% of the US fleet and are on track to further increase their proportion in subsequent years. The Environmental Protection Agency (EPA) has previously used its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation tool to evaluate the greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA contains a library of benchmarked powertrain components that can be matched to specific vehicles to explore GHG emissions performance.
Technical Paper

Dynamic Characterization of a Twin Plate Torque Converter Clutch During Controlled Slip

2024-04-09
2024-01-2715
This paper details testing for torque converter clutch (TCC) characterization during steady state and dynamic operation under controlled slip conditions on a dynamometer setup. The subject torque converter under test is a twin plate clutch with a dual stage turbine damper without a centrifugal pendulum absorber. An overview is provided of the dynamometer setup, hydraulic system and control techniques for regulating the apply pressure to the torque converter and clutch. To quantify the performance of the clutch in terms of control stability, pressure to torque relationship and the dynamic behavior during apply and release, a matrix of oil temperatures, output speeds, input torques, and clutch apply pressures were imposed upon the torque converter.
Technical Paper

Gasoline Simulated Distillation Profiles of U.S. Market Gasoline and Impacts on Vehicle Particulate Emissions

2023-10-31
2023-01-1632
A gasoline’s distillation profile is directly related to its hydrocarbon composition and the volatility (boiling points) of those hydrocarbons. Generally, the volatility profiles of U.S. market fuels are characterized using a very simple, low theoretical plate distillation separation, detailed in the ASTM D86 test method. Because of the physical chemistry properties of some compounds in gasoline, this simple still or retort distillation has some limitations: separating azeotropes, isomers, and heavier hydrocarbons. Chemists generally rely on chromatographic separations when more detailed and precise results are needed. High-boiling aromatic compounds are the primary source of particulate emissions from spark ignited (SI), internal combustion engines (ICE), hence a detailed understanding and high-resolution separation of these heavy compounds is needed.
Technical Paper

Evaluation of Neat Methanol as Fuel for a Light-Duty Compression Ignition Engine

2023-08-28
2023-24-0047
Methanol is currently being evaluated as a promising alternative fuel for internal combustion engines, due to being attainable by carbon neutral or negative pathways (renewable energy and carbon capture technology). The low ignitability of methanol has made it attractive mostly as a fuel for spark ignition engines, however the low sooting properties of the fuel could potentially reduce the NOx-soot tradeoff present in compression ignition engines. In this work, using a 4-cylinder engine with compression ratio modified from 16:1 to 19:1, methanol combustion is evaluated under five operating conditions in terms of fuel consumption, criteria pollutants, CO2 emissions and engine efficiency in addition to the qualitative assessment of the combustion stability. It was found that combustion is stable at medium to high loads, with medium load NOx emissions levels at least 30% lower than the original diesel engine and comparable emissions at maximum load conditions.
Technical Paper

Virtual Development of Control Coordinator for Engine and Aftertreatment Architecture Equipped with Diesel Fuel Burner

2023-08-28
2023-24-0103
Heating devices are effective technologies to strengthen emission robustness of AfterTreatment Systems (ATS) and to guarantee emission compliance in the new boundaries given by upcoming legislations. Moreover, they allow to manage the ATS warm-up independently from engine operating conditions, thereby reducing the need for specific combustion strategies. Within heating devices, an attractive solution to provide the required thermal power without mandating a 48V platform is the fuel burner. In this work, a model-based control coordinator to manage the interaction between engine, ATS and fuel burner device has been developed, virtually validated, and optimized. The control function features a burner model and a control logic to deliver the needed amount of thermal energy, while ensuring ATS hardware protection.
Journal Article

A Process to Characterize the Sound Directivity Pattern of AVAS Speaker

2023-05-08
2023-01-1095
Speaker performance in Acoustic Vehicle Alerting System (AVAS) plays a crucial role for pedestrian safety. Sound radiation from AVAS speaker has obvious directivity pattern. Considering this feature is critical for accurately simulating the exterior sound field of electrical vehicles. This paper proposes a new process to characterize the sound directivity pattern of AVAS speaker. The first step of the process is to perform an acoustic testing to measure the sound pressure radiated from the speaker at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual speaker, the locations of each microphone and measured sound pressure data, an inverse method, namely the inverse pellicular analysis, is adopted to recover a set of vibration pattern of the virtual speaker surface. The recovered surface vibration pattern can then be incorporated in the full vehicle numerical model as an excitation for simulating the exterior sound field.
Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

Perspectives on the Transition from Hardware-Based Validation and Product Evaluation to Virtual Processes

2023-04-11
2023-01-0164
Accelerating product development cycles and incentives to reduce costs in product development are strong motivators to move to virtual development and validation processes. Challenges to moving to a virtual paradigm include a wealth of historical data and context for hardware tests, uncertainty over dependencies, and a lack of a clear path of transition to virtual methods. In this paper we will discuss approaches to understanding the value created by hardware tests and aligning that value to virtual processes. We will also discuss the need for a virtual context to be added to SAE J1739 [1] (DFMEA detection criteria), and how to create paths to maximize the value of virtual assessments. Finally, we will also discuss the cultural and organizational changes required to support.
Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
Technical Paper

Correlation of Detailed Hydrocarbon Analysis with Simulated Distillation of US Market Gasoline Samples and its Effect on the PEI-SimDis Equation of Calculated Vehicle Particulate Emissions

2023-04-11
2023-01-0298
Several predictive equations based on the chemical composition of gasoline have been shown to estimate the particulate emissions of light-duty, internal combustion engine (ICE) powered vehicles and are reviewed in this paper. Improvements to one of them, the PEISimDis equation are detailed herein. The PEISimDis predictive equation was developed by General Motor’s researchers in 2022 based on two laboratory gas chromatography (GC) analyses; Simulated Distillation (SimDis), ASTM D7096 and Detailed Hydrocarbon Analysis (DHA), ASTM D6730. The DHA method is a gas chromatography mass spectroscopy (GC/MS) methodology and provides the detailed speciation of the hundreds of hydrocarbon species within gasoline. A DHA’s aromatic species from carbon group seven through ten plus (C7 – C10+) can be used to calculate a Particulate Evaluation Index (PEI) of a gasoline, however this technique takes many hours to derive because of its long chromatography analysis time.
Technical Paper

Material Characterization of Strain Rate Dependent Elastomers using Simplified Rubber Material Model in LS-DYNA

2022-10-05
2022-28-0379
Elastomers are widely used in many automotive components such as seals, gaskets etc., for their hyperelastic properties. They can undergo large strain and can return to their original state with no significant deformation making them suitable for energy dissipation applications. Most common testing procedures include uniaxial tension, pure shear, biaxial tension and volumetric compression under quasi-static loading conditions. The results from these tests are used to generate material models for different finite element (FE) solvers, such as LS-DYNA. Commonly used material models for elastomers in LS-DYNA are the Ogden Material Model (MAT77), which uses parameter-based approach and the Simplified Rubber Material Model (MAT181), which uses tabulated input data. Prediction of rate dependent behavior of elastomers is gaining interest as, for example, during a crash simulation the components undergo impact under different strain rates.
Journal Article

Re-imagining Brake Disc Thermal Fatigue Testing to Relate to Field Use

2022-09-19
2022-01-1163
The validation of brake discs has remained, to this day, heavily reliant on “Thermal Abuse” or “Thermal Cracking” type testing, with many procedures so dated that most engineers active in the industry today cannot even recall the origin of the test. These procedures - of which there are many variants - all share the trait of greatly accelerating durability testing by performing repeated high power (high speed and high deceleration) brake applies to drive huge temperature gradients and internal stress, and often allowing the disc to get very hot, to where the strength of the material from which the disc is constructed is significantly degraded. There is little debate about whether these procedures work; by and large disc durability issues in the field are extremely rare.
Journal Article

Estimating Brake Pad Life in Regenerative Braking Intensive Vehicle Applications

2022-09-19
2022-01-1161
Regenerative braking without question greatly impacts brake pad service life in the field, in most cases extending it significantly. Estimating its impact precisely has not been an overriding concern - yet - due in part to the extensive sharing of brake components between regen-intensive battery-electric and hybrid vehicles, and their more friction-brake intensive internal combustion engine powered sibling. However, a multitude of factors are elevating the need for a more accurate estimation, including the emerging of dedicated electric vehicle architectures with opportunities for optimizing the friction brake design, a sharp focus on brake particulate emissions and the role of regenerative braking, a need to make design decisions for features such as corrosion protection for brake pad and pad slide components, and the emergence of driver-facing features such as Brake Pad Life Monitoring.
Journal Article

Dual Transfer Function Approach to Analyze Low Frequency Brake Noise without Comprehending Friction Behavior in Advance

2022-09-19
2022-01-1176
Analyzing low frequency brake noise (< 300Hz) has been challenging due to the difficulty associated with calculating dynamic friction behavior and its multiple structure-borne noise transfer paths. In theory, it is possible to simulate sound pressure level inside the cabin by calculating a transfer function between friction excitation, which is on the interface between rotor and pads, and cabin acoustic response, and by multiplying dynamic friction force at the rotor-pad interface to that transfer function. However, calculating the dynamic friction forces when brake noise occurs has been one of the most challenging research topics in the brake community. This paper describes a novel concept to simulate sound pressure level inside the cabin without knowing the dynamic friction forces at the rotor-pad interface in advance.
Journal Article

Evaluation of the Effect of Low-Carbon Fuel Blends’ Properties in a Light-Duty CI Engine

2022-08-30
2022-01-1092
De-fossilization is an increasingly important trend in the energy sector. In the transport sector the de-fossilization efforts have been centered in promoting the electrification of vehicles, nonetheless other pathways, like the use of carbon neutral or carbon-offsetting fuels under current vehicle fleets, are also worth considering. Low-carbon fuels (LCF) can be synthetized from sources that can take advantage of the carbon already present in the atmosphere (either by technologies like direct carbon capture or biological processes like photosynthesis in biofuels) and use energy from renewable sources for the necessary industrial processes. Although, LCFs can be compared to fossil fuels as energy sources for internal combustion engines, their composition is not the same and their properties can modify the engine combustion and emissions.
Technical Paper

Aftertreatment Layouts Evaluation in the Context of Euro 7 Scenarios Proposed by CLOVE Abstract

2022-06-14
2022-37-0008
Euro 7/VII regulations are currently under discussion and are expected to be the last big regulatory step in Europe. From available documentation, it is clear the aim of further regulating the extended conditions of use which are still responsible of high emission events (e. g. cold start or altitude) as well as regulating secondary emissions such as NH3, N2O, CH4, Aldehydes (HCHO). Even if not completely fixed yet, the EU7 limits will be challenging for internal combustion engines and even more for Diesel. Despite a consistent reduction of market share, Diesel engines are expected to remain a significant portion in certain sectors such as Heavy duty (HD) and Light-commercial vehicle (LCV) for some decades. In order to reach the new limits being proposed, besides minimizing engine-out emissions, Diesel powertrain will need an aftertreatment system able to work at very high efficiency right after engine start and in almost every working and environmental condition.
Technical Paper

Physics-Guided Sparse Identification of Nonlinear Dynamics for Prediction of Vehicle Cabin Occupant Thermal Comfort

2022-03-29
2022-01-0159
Thermal cabin comfort is the largest consumer of battery energy second only to propulsion in Battery Electric Vehicles (BEV’s). Accurate prediction of thermal comfort in the vehicle cabin with fast turnaround times will allow engineers to study the impact of various thermal comfort technologies and develop energy efficient Heating, Ventilation and Air Conditioning (HVAC) systems. In this study a novel data-driven model based on physics-guided Sparse Identification of Nonlinear Dynamics (SINDy) method was developed to predict Equivalent Homogeneous Temperature (EHT), Mean Radiant Temperature (MRT) and cabin air temperature under transient conditions and drive cycles. EHT is a recognized measure of the total heat loss from the human body that can be used to characterize highly non-uniform thermal environments such as a vehicle cabin. The SINDy model was trained on drive cycle data from Climatic Wind Tunnel (CWT) for a representative Battery Electric Vehicle.
X