Refine Your Search

Topic

Author

Search Results

Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Technical Paper

Formability of an Automotive Aluminum Alloy-AA5754 CC

2008-04-14
2008-01-1094
We have studied the formability of continuous strip cast (CC) AA5754 aluminum alloy for automotive applications. Strip casting technology can considerably reduce material cost compared with conventional direct chill (DC) cast aluminum sheets. However, the CC material tends to exhibit much less post-localization deformation and lower fracture strains compared with DC sheets with similar Fe content, although both alloys show similar strains for the onset of localization. Bendability of the CC alloy is also found to be inferior. The inferior behavior (post-necking and bendability) of the CC alloy can be attributed to the higher incidence of stringer-type particle distributions in the alloy. The formability of the AA5754 alloy has also been studied using two dimensional microstructure-based finite element modeling. The microstructures are represented by grains and experimentally measured particle distributions.
Technical Paper

Combustion System Development using Optical Spark Plug Probes

2008-04-14
2008-01-1074
In developing the features of a spark-ignition combustion chamber, optical combustion diagnostic technology was employed to understand the factors contributing to knock propensity of the combustion system. This optical combustion visualization equipment utilizes optical prisms located around the periphery of the spark plug shell to measure light intensity of combustion. By synchronizing light intensity and cylinder pressure measurements to crankshaft position, local tracking of combustion progression is accomplished. This method was used to track knock occurrences and to evaluate their controlling parameters within this combustion system. Cylinder head and piston top geometries were developed as a result of this combustion visualization. Recommendations derived from these studies were successfully used to achieve objectives of this engine development program which included improvements in torque and power output, fuel economy, and combustion stability.
Technical Paper

Formability Predictions of Hydroformed AKDQ Steel Tubes by Various Burst Criteria

2007-04-16
2007-01-1690
The accurate prediction of burst of hydroformed tubes is a research area of considerable importance in order to evaluate a design before prototyping. This report applies the presently available criteria (forming limit diagram, stress-based forming limit diagram, extended stress based forming limit curve and the plastic strain criterion) to some of the benchmark examples carried out by the Auto/Steel partnership. It was found that the formability predictions are lowest if the plastic strain criterion is used and highest if either the stress-based criteria are used. Predicted and measured results were also compared.
Technical Paper

Three-Dimensional Structure of Portevin-Le Chatelier Bands and Shear Bands in Strip Cast AA5754 Sheets Using Digital Image Correlation

2007-04-16
2007-01-1381
Strip cast AA5754 sheets are of interest for automotive interior panel applications. However, Portevin-Le Chatelier (PLC) bands are seen in this material and cause surface quality concerns. Moreover, shear banding is the main failure mechanism of this material. However, the relationship between PLC bands and shear bands is still controversial in the literature. In order to delineate this problem, the digital image correlation (DIC) strain mapping technique is used to explore the three-dimensional structures of PLC bands and shear bands in AA5754 sheets. Two-dimensional DIC measurements were carried out simultaneously on both of the sheet sample surfaces (front and back side) of an AA5754 tensile sample using a commercially available optical strain mapping DIC-based system (Aramis). DIC measurements were also conducted on the thickness direction. Based on the strain mapping results, the three dimensional structures of both PLC bands and shear bands are constructed.
Technical Paper

Piston Fuel Films as a Source of Smoke and Hydrocarbon Emissions from a Wall-Controlled Spark-Ignited Direct-Injection Engine

2003-03-03
2003-01-0547
Thin films of liquid fuel can form on the piston surface in spark-ignited direct-injection (SIDI) engines. These fuel films can result in pool fires that lead to deposit formation and increased hydrocarbon (HC) and smoke emissions. Previous investigations of the effects of piston fuel films on engine-out HC and smoke emissions have been hampered by their inability to measure the fuel-film mass in operating direct-injection engines. In this paper, a recently developed high-speed refractive-index-matching imaging technique is used for quantitative time- and space-resolved measurements of fuel-film mass on a quartz piston window of an optically-accessible direct-injection engine operating over a range of fully-warmed-up stratified-charge conditions with both a high-pressure hollow-cone swirl-type injector and with a high-pressure multihole injector.
Technical Paper

Elevated Temperature Forming of Sheet Magnesium Alloys

2001-10-16
2001-01-3104
The use of sheet magnesium for automobile body applications is limited, in part, due to its low room temperature formability. Elevated temperature forming of magnesium sheet could enable the manufacture of automobile body closure and structural panels to meet vehicle mass targets. The effect of temperature in improving the formability of sheet magnesium has been known since the 1940's; however, automobile applications for sheet magnesium still have been very limited. The present work characterizes the elevated temperature mechanical behavior of commercially available magnesium sheet alloys at temperatures between 300°C and 500°C. The materials are then evaluated using both warm forming and superplastic forming technologies.
Technical Paper

Development of Creep-Resistant Magnesium Alloys for Powertrain Applications: Part 1 of 2

2001-03-05
2001-01-0422
A family of low-cost, creep-resistant magnesium alloys has been developed. These alloys, containing aluminum, calcium, and strontium are designated as “ACX” alloys. Developed for engine blocks and transmissions, the “ACX” alloys have at least 40% greater tensile and 25% greater compressive creep resistance than AE42, and corrosion resistance as good as AZ91D (GMPG 9540P/B corrosion test). These alloys are estimated to cost only slightly more than AZ91D and have as good castability. Creep data up to 200°C, tensile properties at room temperature and 175°C, corrosion results and microstructure analysis are presented and discussed. These alloys have the potential to enable the extension of the substantial weight reduction benefits of magnesium to powertrain components.
Technical Paper

Combining a Statistical Design of Experiments with Formability Simulations to Predict the Formability of Pockets in Sheet Metal Parts

2001-03-05
2001-01-1130
The design of pockets on automotive sheet metal parts can significantly affect part formability. We have developed regression formulas for predicting the failure depth of a symmetric rectangular pocket as a function of the geometric parameters that define the pocket. The formulas were developed by statistically selecting combinations of geometric pocket parameters for formability analysis and using formability simulations to determine the pocket failure depth for each selected parameter combination. The regression formulas were tested by comparing their predictions with simulations for combinations of part parameters not used to develop the formulas.
Technical Paper

Overview of Techniques for Measuring Friction Using Bench Tests and Fired Engines

2000-06-19
2000-01-1780
This paper presents an overview of techniques for measuring friction using bench tests and fired engines. The test methods discussed have been developed to provide efficient, yet realistic, assessments of new component designs, materials, and lubricants for in-cylinder and overall engine applications. A Cameron-Plint Friction and Wear Tester was modified to permit ring-in-piston-groove movement by the test specimen, and used to evaluate a number of cylinder bore coatings for friction and wear performance. In a second study, it was used to evaluate the energy conserving characteristics of several engine lubricant formulations. Results were consistent with engine and vehicle testing, and were correlated with measured fuel economy performance. The Instantaneous IMEP Method for measuring in-cylinder frictional forces was extended to higher engine speeds and to modern, low-friction engine designs.
Technical Paper

Assessment of Human Responses to Non-Azide Air Bag Effluents

1999-10-10
99SC26
All air bag systems use a pyrotechnic combustion process for the generation of gases. In some systems, it is also used for the heating of stored gases to quickly inflate the air bag. As a by-product of the process, gases and particles are produced that enter the passenger compartment resulting in inhalation of these substances. We have previously shown that systems using sodium azide as the gas generant can initiate asthmatic attacks in susceptible individuals. To evaluate whether the effluents from new-generation, non-azide air bag systems also have the potential to produce adverse responses, we performed controlled exposures of mild to moderate asthmatics to the effluents from six of these air bag systems. Each volunteer asthmatic subject was pulmonary function tested (baseline), and then seated in the back seat of the test vehicle. The air bag system was deployed and the subjects remained in the vehicle for twenty minutes.
Technical Paper

Variation in Autobody Adhesive Curing Process

1999-03-01
1999-01-0997
Adhesive joining is a common autobody subassembly technique especially for outer panels, where visible spot welding is objectionable. To accommodate mass production with the use of certain adhesives very high thermal gradient usually exists, which may result in panel dimensional distortion and variation. The temperature distribution over location and over time are monitored, and its impact to panel dimension is investigated. Experimental results on the effect of the distance between panel and induction coil on the panel temperature is obtained. The thermal induced shape distortion is simulated with a simplified FEA model. The approach to improvement of the induction curing process is discussed.
Technical Paper

Development and Application of Enhanced Compacted Graphite Iron for the Bedplate of the New Chrysler 4.7 Liter V-8 Engine

1999-03-01
1999-01-0325
For the new 4.7 L, V-8 engine, which was introduced in the all new 1999 Jeep Grand Cherokee, Chrysler product engineers found they needed a bedplate material that was significantly stronger and stiffer than gray iron to help meet engine weight requirements. The material also had to provide good NVH characteristics, be cost effective, and machinable. Intermet Corporation, the casting supplier, wanted a material that was significantly tougher than gray iron, would cast sound in complex sections, and which could be reliably produced on a cost effective basis. This paper presents an overview of the development, properties, casting practices, and engine validation of enhanced compacted graphite iron, a material specifically developed and tailored for the bedplate of the new 4.7 liter engine.
Technical Paper

An Experiment-Based Model of Fabric Heat Transfer and Its Inclusion in Air Bag Deployment Simulations

1999-03-01
1999-01-0437
A numerical model is presented that is capable of isolating and quantifying the heat flux from the gas within the bag to the air bag fabric due to internal surface convection during the inflator discharge period of an air bag deployment. The model is also capable of predicting the volume averaged fabric temperatures during the air bag deployment period. Implementation of the model into an air bag deployment code, namely Inflator Simulation Program (ISP), is presented along with the simulation results for typical inflators. The predicted effect of the heat loss from the bag gas to the fabric on the internal bag gas temperature and pressure and the resulting bulk fabric temperature as a function of fabric parameters and the inflator exit gas properties are presented for both permeable and impermeable air bag fabrics.
Technical Paper

Comparative Life Cycle Assessment of Plastic and Steel Vehicle Fuel Tanks

1998-11-30
982224
Federal standards that mandate improved fuel economy have resulted in the increased use of lightweight materials in automotive applications. However, the environmental burdens associated with a product extend well beyond the use phase. Life cycle assessment is the science of determining the environmental burdens associated with the entire life cycle of a given product from cradle-to-grave. This report documents the environmental burdens associated with every phase of the life cycle of two fuel tanks utilized in full-sized 1996 GM vans. These vans are manufactured in two configurations, one which utilizes a steel fuel tank, and the other a multi-layered plastic fuel tank consisting primarily of high density polyethylene (HDPE). This study was a collaborative effort between GM and the University of Michigan's National Pollution Prevention Center, which received funding from EPA's National Risk Management Research Laboratory.
Technical Paper

A New Racing Engine Charging System with a Permanent Magnet Alternator

1998-11-16
983067
An efficient light weight 425 Watts charging system was developed and built to meet the requirements of a 12-cylinder engine for racing application. The new system consists of a permanent magnet (PM) alternator with MAGNEQUENCH (MQ3) magnets and a high frequency switching regulator to regulate the output voltage over the engine speed range of 2,000-12,000 rpm. The system has been tested for 75% overall efficiency as compared to 38% for the present system over most of the speed range. Excellent dynamic response (less than 1 ms) has been measured, which allows the alternator to support pulsed loads, even if the battery is disconnected during operation. The new system weighs 3.73 kg vs 5.4 kg of the existing system.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

Surface Degradation of Mold-in-Color Polymers for Exterior Applications

1998-09-29
982339
This study was conducted to analyze and quantify the effects of accelerated weathering on the surface of various “weatherable” polymers currently utilized for molded-in-color exterior automotive applications. Evaluations consisted of gloss/color retention and surface changes after accelerated weathering exposure, with and without intermittent washing, to simulate product life cycle. Results were found to be affected by both polymer type and interim surface treatments. Data are presented as a means to define specific performance and aesthetic capabilities of these various polymers in a mold-in-color environment to optimize material selection for related component applications.
Technical Paper

Using Life Cycle Management to Evaluate Chrome Free Sealing Wash

1998-02-23
980102
Life cycle benefits of a chrome-free sealing wash were evaluated. Material consumption, disposal costs, water pretreatment, waste water treatment and product performance were used to compare a chrome-free product to traditional washes. Acquisition costs and vehicle weight impacts were also considered. The direction of domestic and international regulatory initiatives will play a significant part in the application of this study=s findings. The paper discusses the factors and decision process that led to the trial of chrome free rinse in a vehicle assembly plant and the results of this test. Durability testing was performed with current and evolving primer systems. Equivalent durability was shown with multiple supplier/multiple primer process combinations. The study indicated that chrome-free sealing wash would yield a small cost savings and a minor reduction in weight with equal performance to the current chrome containing process.
Technical Paper

Recyclability and Characterization of Co-Extruded Multilayer Fuel Tanks

1998-02-23
980096
The recyclability of co-extruded multilayer fuel tanks, and characterization of the materials used in their manufacture, have been investigated. The ethylene-vinyl alcohol, EvOH, copolymer barrier layer, extruded as a sandwich between two adhesive layers of a maleated linear low density polyethylene, LLDPE, is surrounded by three high density polyethylene, HDPE, layers, one of which is composed of the regrind derived from the waste generated by manufacture. Particular attention has been focused on the mechanism of adhesion between the barrier layer and the adhesive layers. Surface analysis of the in situ surfaces has confirmed the formation of chemical bonds between the two polymers. Morphological information, concerning dispersion of the barrier layer in the HDPE matrix during recycling, has been obtained by scanning (SEM) and transmission (TEM) electron microscopy techniques.
X