Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Methodology for virtual analysis of dynamic behavior for tubes and flexible hoses associated with suspension kinematics

2024-01-08
2023-36-0009
Nowadays the automotive market is reducing product development time and launching more technological vehicles, always focusing on having even more safety with better customer experience which generates big competitiveness and requires more accurate and faster development, the virtual simulations make it possible to meet this new reality with a high confidence level. This work comprises the validation of a methodology to analyze the design confidence level for flexibles associated with suspension kinematics. To validate the methodology, the scanned physical model was compared with the virtual simulations using the Simcenter 3D Flexible Pipe software. As inputs data for simulation, it is used geometrical, physical, and chemical information. Through the suspension kinematics study was establish possible movement situations to obtain the flexibles deformations attending to all suspension positions.
Technical Paper

Methodology for Virtual Analysis of the Dynamic Behavior of Parking Brake Cable Attached to Leaf Spring Suspension

2017-11-07
2017-36-0128
Through computational dynamic simulations is possible to achieve high reliability index in the development of automotive components, thus reducing the time and component cost can generate significant levels of competitiveness and quality. This work suggests the validation of a methodology for simulation, able to predict and quantify the best design of the parking brake cable that although it is flexible, has in its structure composite elements of different mechanical properties. Known difficulty of mathematically predict nonlinear relationships deformation under forces and moments effect was first established, studies based on experimental measurements serve as input parameters for simulating the dynamic behavior of the flexible cable. With the aid of motion making use of NX9 CAD software, it was prepared the dynamic movement that the leaf spring suspension system does.
Technical Paper

Technical Assessment of an Automotive System through the Methodology of Engineering Value / Analysis Value

2016-10-25
2016-36-0327
In the current automotive industry, in an increasingly challenging environment due to strong competition, to develop a product that performs its functions objectively, with quality and mainly with the lowest possible cost, these are the keys to conquer competitive advantage. This paper is intended to explore cost reduction of an automotive system by using the techniques of the methodology EV / AV (Engineering Value / Analysis Value). The analysis are framed as exploratory, in the form of study, with ratings of the components and their functions, followed by the generation of ideas with the completion of an indication of a great potential for a product development with optimized cost.
Technical Paper

Methodology for the Analysis of Virtual Deformation of Flexible Elements Associated with the Engine Displacement

2015-09-22
2015-36-0171
Through computational dynamic simulations is possible to achieve high reliability index in the development of automotive components, thereby enabling the reduction of cost and time of a product development with considerable gain in quality. This work suggests the validation of a methodology for simulation where is possible to improve the confidence level for design flexible components, such Heater and Cooling hoses that are under dynamic engine action, in relation to the physical model. Known the difficulty in predicting non-linear mathematical relationship deformation under effect of forces and moments, was established a study based on experimental measurements where were used as input parameters to simulate the dynamic behavior of flexible components, in this case, coolant hoses.
Technical Paper

Acoustic Development Differences Between Theoretical And Experimental Process for Automotive Exhaust System

2015-09-22
2015-36-0277
Acoustics, in a broad sense, is an essential product attribute in the automotive industry, therefore, it is relevant to study and compare theoretical and numerical predictions to experimental acoustic measurements, key elements of many acoustic development processes. The numerical methods used in the industry for acoustic predictions are widely used for exhaust system optimization. However, the numerical and theoretical predictions very often differ from experimental results, due to modeling simplifications, temperature variations (which have high influence on speed of sound), manufacturing variations in prototype parts among others. This article aims to demonstrate the relevant steps for acoustics development applied in automotive exhaust systems and present a comparative study between experimental tests and computer simulations results for each process. The exhaust system chosen for this development was intended for a popular car 4-cylinder 1.0-liter engine.
Technical Paper

Study of Geometric Parameters for Validation and Reduction Effort in Steering System of a Vehicle FSAE

2015-09-22
2015-36-0147
This paper explores the method of modeling and validation the computational tools able to accurately replicate the dynamic behavior of a Formula SAE vehicle. Based on limitations in conducting physical tests, it is possible to mathematically predict the forces and momentum generated on the steering column of the vehicle, minimizing effort and improving driver comfort even before the component physically manufactured. The results in permanent state due technical instrumentations were used in the physical vehicles and compared with other proposals (skid Pad test). As the software simulating the same path, it was possible to adopt values of speed and wheel steering, allowing compare the dynamics of the vehicle, through the signals from other sensors installed in the data acquisition system, validating the behavior of the models presented in permanent state. Other aspects were studied to understand vehicle behavior concerning lateral stability and steering behavior.
Technical Paper

Vehicle Interior Noise Reduction Using Innovative Roof Trim Structure

2014-11-04
2014-36-0767
It is known acoustic comfort is a key feature to meet customer expectations for many products. In the current automotive industry, vehicle interior quietness is seen as one of the most important product attributes regarding perceived quality. A quiet interior can be achieved through an appropriate balance of noise sources levels and acoustic materials. However, the choice of the most efficient acoustic content may be challenging under severe cost and mass restraints commonly found in emerging market vehicles. Therefore, it is fundamental to develop efficient materials which will provide high acoustic performance with lower weight and cost. In this paper the fine tuning of the headliner structure is presented as an efficient way to increase acoustic performance. Structures currently employed for this vehicle subsystem are described. Airflow resistance and sound absorption measurements are used to guide development and make precise manufacturing process changes.
Technical Paper

Daytime Running Light (DRL) Application on Brazilian Vehicles

2014-09-30
2014-36-0223
Brazil, that presents one of the highest accidents indexes of the world, does not have any specific regulation related to the use of an external light during the day time which provides a better visibility of the vehicle in movement and according to studies gives more reaction time for the other road users. Many countries in Europe and North America shows good results since they adopted the lights on during the day with collision reduction of vehicle to vehicle, vehicle to pedestrian and vehicle to cyclists. The aim of this study is to show the benefits of the Daytime Running Lights (DRL) and its relation to the reduction of the traffic accidents, as well as a brief analysis on the use of a dedicated system, which can be more efficient since it can be designed to provide a light distribution allowing a better visibility as possible.
Technical Paper

Vehicle Restraint System Optimization for Frontal Impact

2013-10-07
2013-36-0473
The Brazilian Automotive regulations that are aimed towards the safety of drivers, passengers and pedestrians have gone through recent changes to prevent and/or minimize injury and trauma from different types of accidents. Until now, National Traffic Council (CONTRAN) Resolution n° 14/98 required vehicles to only have safety belts for an occupant restraint system, and frontal airbags were not required. Since the recent CONTRAN n° 311/09 Resolution requires mandatory frontal airbags, the occupant restraint system must be tuned due to the interaction with different components that may make up the system, like safety belts with pretensioners and seatbelt load limiting devices. The present study was developed to optimize the restraint system of a current vehicle in production, while focusing on minimizing the vehicle complexity. The optimization tool helped to develop a robust restraint system for the frontal passenger during a frontal impact [1].
Technical Paper

Blanks Physical Parameters Optimization for Automotive Panels Deep Drawing

2013-10-07
2013-36-0204
This work conducted an optimization in sheet metal blank's sizes for cold pressing automotive parts, comparing dimensional characteristics of automotive hood outer panels deep drawn with commonly used blank sizes for this process. As a result, it was possible to suggest modifications to smaller blank sizes, accordingly to the improvement accomplished in this work. The experimental study was conducted from observations in part's superficial aspects after its deep drawing process, which was realized in a commonly used tooling for automotive industry, with a blank's width reduction for the suggested case. The results showed a cost reduction opportunity based in this optimization.
Technical Paper

Springback: How to Improve its Early Prediction Instead of Late Stamping Dies Rework

2012-10-02
2012-36-0373
The globalization, rivalry and the technologies have changed the auto industry in a battlefield, where companies are fighting for quality, reliability, the reduction of development cycle and also cost. The manufacturing process of car body is the major responsible for time consumption, labor and investment. One of the bottleneck solutions is to use computational simulations during design phase in order to minimize the reworks. The car body is composed by several stamped parts, and its design requires a series of parallel activities, and one of the fundamental information is the accurate magnitude of spring back distortions, but due to the complexity of the phenomenon, the results are not so accurate as desired. The explored literatures are recommending numeric methods to simulate material's behavior and also the spring back phenomenon.
Technical Paper

Computational method to assess the SUV drivers' dynamics due to rollover crashes

2010-10-06
2010-36-0223
Even though the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The need to reduce death incidence and serious injuries has increased the importance of computational simulations and prototype testing. This study presents finite element model to simulate rollover events and to predict possible injuries caused in the head, neck, thorax and cervical spine. Numerical models of a sport utility vehicle (SUV) are simulated including anthropomorphic dummy to represent the driver. The injury risks and traumas are verified to the driver considering belted and unbelted dummies. The computational methodology developed proved to be efficient for the evaluation of the vehicle's roof structure in rollover events.
Technical Paper

ISO Headform Pedestrian Protection test results comparison at critical bonnet regions

2010-10-06
2010-36-0236
Test Protocols for pedestrian head protection in a car pedestrian accident have been discussed for several Technical Communities in order to identify ideal boundary test conditions to evaluate injury limits. With the purpose to harmonize with final Global Technical Regulation 9 for Pedestrian Protection published by ECE in January 2009, European New Car Assessment Program (ENCAP) has changed their Child and Adult headform weight and geometry boundary test conditions. However 5 Kph remains as difference between both protocols. This work presents a comparative head impact test analysis for both headform at ENCAP and GTR#9 boundary test conditions when performed at critical bonnet regions.
Technical Paper

Control of Airborne Road Noise Using Sealers

2010-10-06
2010-36-0458
Noise generated during tire/road interaction has significant impact on the acoustic comfort of a vehicle. One of the most common approaches to attenuate road noise levels consists on the addition of mass treatments to the vehicle panels. However, the acoustic performance of sealing elements is also relevant and has an important contribution to the noise transmission into the vehicle interior. In this paper the correct balance between the mass added to treat vehicle panels and sealing content is investigated. The procedure to quantify the critical road noise transmission paths consists of recording interior noise levels as applied treatment is removed from potential weak areas, such as wheelhouses, floor, doors and body pillars. It is observed that the noise propagation through body pillars has a direct influence on road noise levels.
Technical Paper

Computational Methodologies for Vehicles Roof Strength Assessment to Prevent Occupants Injury in Rollover Crashes

2009-10-06
2009-36-0267
Among all types of vehicle crashes, rollover is the most complex and yet least understood. During the last decades, a constant increase in the studies involving rollover crashes and injuries associated with it can be observed. Although the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The existing standards and procedures to test rollover crashworthiness are still not suitable to computer simulation because of the huge computational effort required, and the need of faithful/overly complex representation of the aspects involved in real crashes. The objective of the present work is the development of computational models particularly adapted to simulate different standards and procedures used to evaluate the vehicles' roof strength. The models are compared with other approaches, and their advantages/disadvantages are discussed.
Technical Paper

Probability of Occupant's Injuries due to Rollover Crashes - Computational Methods

2009-10-06
2009-36-0261
Rollover crashes are responsible for more than 20% of total passengers deaths in vehicular accidents. Every year a higher number of consumers have been critically injured in rollovers, which translates into hundreds of millions of dollars of unnecessary health care cost. Efforts to reduce the incidence of death and catastrophic injuries associated with rollover crashes have increased the importance of both, prototype testing and computational simulations. Automotive industry and individual researchers have performed numerous rollover tests using instrumented anthropomorphic test devices (ATD), with the objective of predicting possible head, neck, and cervical spine injuries. Some of these works measured accelerations, forces and moments on head, neck and cervical spines, which can cause several other injuries according to medical traumas databases.
Technical Paper

EMC simulations - Application of simple antenna models to represent electromagnetic generators in vehicles

2008-10-07
2008-36-0050
Nowadays, electromagnetic compatibility (EMC) has taken an important role in automotive development. This is because the effects that EMC can cause in a vehicle or on the environment. All systems contained in a vehicle emit EMC, and can be influenced by it also. During the vehicle design phase some variables have to be considered and improved to make the vehicle to be electromagnetic compatible. We can list the vehicle systems as electromagnetic generators or victims, as below: Generators: Ignition GPS transmission system Mobile phone transmission system Electrical motors Radars Power modules Victims: Sensors Cables Control modules (BCM, ECM, etc.) An example of a complete system subject to the EM effects is the X-by-wire (or drive-by-wire) system, where mechanical systems are substituted by modules, cables, sensors, actuators. This system has to be designed considering electromagnetic compatibility.
Technical Paper

A case-study about side door closing effort

2008-10-07
2008-36-0154
Door Closing Effort is one of the first impressions a potential customer has about a vehicle. The energy someone needs to give out to push and lock a side door vehicle is easily felt and can enhance the impression of a robust and high quality design vehicle. In other words, Door Closing Effort is one of the issues manufacturers shall look over in order to achieve perfect levels of Human Vehicle Integration (HVI). The aim of this paper is to present a case study of Side Door Closing Effort of a specific Hummer vehicle. It will be shown how door closing effort varies according to several parameters, and how to improve the design and/or production process in view of achieving better effort levels, considering the Hummer case as a background. Several variables that influence on the overall energy of this process have been evaluated, and the physical differences were weighted to demonstrate what really counts for reaching a comfortable level of Door Closing Effort.
Technical Paper

A Case Study About Side Door Closing Sound Quality

2008-03-30
2008-36-0590
Side Door Closing Sound Quality is one of the first impressions a potential customer has about a vehicle. It can enhance an impression of robust and high quality vehicle. This paper is a study of Side Door Closing Sound of a specific vehicle model. The main objective is to understand how Door Closing Sound Quality varies over several vehicles samples and how to improve the design and/or production process in order to achieve better Sound Quality. Two vehicles (same model) with distinct performance have been chosen among several samples. Both have been evaluated and the physical differences are weighted to realize what really matter for Door Closing Sound Quality.
X