Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Security Analysis of Android Automotive

2020-04-14
2020-01-1295
In-vehicle infotainment (IVI) platforms are getting increasingly connected. Besides OEM apps and services, the next generation of IVI platforms are expected to offer integration of third-party apps. Under this anticipated business model, vehicular sensor and event data can be collected and shared with selected third-party apps. To accommodate this trend, Google has been pushing towards standardization among proprietary IVI operating systems with their Android Automotive platform which runs natively on the vehicle’s IVI platform. Unlike Android Auto’s limited functionality of display-projecting certain smartphone apps to the IVI screen, Android Automotive will have access to the in-vehicle network (IVN), and will be able to read and share various vehicular sensor data with third-party apps. This increased connectivity opens new business opportunities for both the car manufacturer as well as third-party businesses, but also introduces a new attack surface on the vehicle.
Journal Article

Performance of Isolated UAV Rotors at Low Reynolds Number

2020-03-10
2020-01-0046
Vertical takeoff and landing vehicle platforms with many small rotors are gaining importance for small UAVs as well as distributed electric propulsion for larger vehicles. To predict vehicle performance, it must be possible to gauge interaction effects. These rotors operate in the less-known regime of low Reynolds number, with different blade geometry. As a first step, two identical commercial UAV rotors from a flight test program are studied in isolation, experimentally and computationally. Load measurements were performed in Georgia Tech’s 2.13 m × 2.74 m wind tunnel. Simulations were done using the RotCFD solver which uses a Navier-Stokes wake computation along with rotor-disc loads calculation using low-Reynolds number blade section data. It is found that in hover, small rotors available in the market vary noticeably in performance at low rotor speeds, the data converging at higher RPM and Reynolds number.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Technical Paper

The Flying Carpet: Aerodynamic High-Altitude Solar Reflector Design Study

2017-09-19
2017-01-2026
Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
Technical Paper

Tradeoff Study of High Altitude Solar Reflector Concepts

2017-09-19
2017-01-2143
A direct solution to Global Warming would be to reflect a part of sunlight back into Space. A system tradeoff study is being developed with three of the concepts that are being evaluated as long-endurance high-altitude reflectors. The first concept is a high aspect ratio solar powered flying wing towing reflector sheets. This concept is named “Flying Carpet”. Second is a centrifugally stretched high altitude solar reflector (CSHASR). The CSHASR has 4 rotors made of reflector sheets with a hub stretching to 60 percent of the radius, held together by an ultralight quad-rotor structure. Each rotor is powered by a solar-electric motor. A variation on this concept, forced by nighttime descent rate concerns, is powered by tip-mounted solar panels and propellers with some battery storage augmenting rotational inertia as well as energy storage. The third concept is an Aerostatically Balanced Reflector (ABR) sheet, held up by hydrogen balloons.
Technical Paper

Pressure Field Evolution on Rotor Blades at High Advance Ratio

2016-09-20
2016-01-2010
The design of advanced rotorcraft requires knowledge of the flowfield and loads on the rotor blade at extreme advance ratios (ratios of the forward flight speed to rotor tip speed). In this domain, strong vortices form below the rotor, and their evolution has a sharp influence on the aero-dynamics loads experienced by the rotor, particularly the loads experienced at pitch links. To understand the load distribution, the surface pressure distribution must be captured. This has posed a severe problem in wind tunnel experiments. In our experiments, a 2-bladed teetering rotor with collective and cyclic pitch controls is used in a low speed subsonic wind tunnel in reverse flow. Stereoscopic particle image velocimetry is used to measure the three component spatial velocity field. Measurement accuracy is now adequate for velocity data, and can be converted to pressure both at and away from the blade surface.
Technical Paper

Coaxial Rotor Flow Phenomena in Forward Flight

2016-09-20
2016-01-2009
Coaxial rotors are finding use in advanced rotorcraft concepts. Combined with lift offset rotor technology, they offer a solution to the problems of dynamic stall and reverse flow that often limit single rotor forward flight speeds. In addition, coaxial rotorcraft systems do not need a tail rotor, a major boon during operation in confined areas. However, the operation of two counter-rotating rotors in close proximity generates many possible aerodynamic interactions between rotor blades, blades and vortices, and between vortices. With two rotors, the parameter design space is very large, and requires efficient computations as well as basic experiments to explore aerodynamics of a coaxial rotor and the effects on performance, loads, and acoustics.
Technical Paper

Slung Load Divergence Speed Predictions for Vehicle Shapes

2015-09-15
2015-01-2570
Loads slung under aircraft can go into divergent oscillations coupling multiple degrees of freedom. Predicting the highest safe flight speed for a vehicle-load combination is a critical challenge, both for military missions over hostile areas, and for evacuation/rescue operations. The primary difficulty was that of obtaining well-resolved airload maps covering the arbitrary attitudes that a slung load may take. High speed rotorcraft using tilting rotors and co-axial rotors can fly at speeds that imply high dynamic pressure, making aerodynamic loads significant even on very dense loads such as armored vehicles, artillery weapons, and ammunition. The Continuous Rotation method demonstrated in our prior work enables routine prediction of divergence speeds. We build on prior work to explore the prediction of divergence speed for practical configurations such as military vehicles, which often have complex bluff body shapes.
Technical Paper

Influence of Liquid Penetration Metrics on Diesel Spray Model Validation

2013-04-08
2013-01-1102
It is common practice to validate diesel spray models against experimental diesel-spray images based on elastic light scattering, but the metric used to define the liquid boundary in a modeled spray can be physically inconsistent with the liquid boundary detected by light scattering measurements. In particular, spray models typically define liquid penetration based on a liquid mass threshold, while light scattering signal intensities are based on droplet size and volume fraction. These metrics have different response characteristics to changes in ambient conditions and fuel properties. Thus, when spray models are “tuned” or calibrated to match these types of measurements, the predictive capabilities of these models can be compromised. In this work, we compare two different liquid length metrics of an evaporating, non-reacting n-dodecane spray under diesel-like conditions using KIVA-3V.
Technical Paper

An Analytic Foundation for the Two-Mode Hybrid-Electric Powertrain with a Comparison to the Single-Mode Toyota Prius THS-II Powertrain

2009-04-20
2009-01-1321
General Motors has introduced a Two-Mode Transmission (2-MT) that provides significant improvements over the Toyota THS-II transmission. These improvements are achieved by employing additional planetaries with clutches and brakes to switch from a Mode-1 to Mode-2 as vehicle speed increases. In addition the 2-MT has four fixed-gear ratios that provide for a purely mechanical energy path from the IC engine to the driven wheels with the electric machines also able to provide additional driving torque. The purpose of this present paper is to extend the methodology in a previous paper [1] to include the 2-MT, thereby presenting an analytic foundation for its operation. The main contribution in this analysis is in the definition of dimensionless separation factors, defined in each mode that govern the power split between the parallel mechanical and electrical energy paths from the IC engine to the driven wheels.
Technical Paper

Monitoring and Diagnostics for Electric Drivetrain Components in HEVs

2006-04-03
2006-01-1124
This paper presents monitoring and diagnostic techniques for drivetrain components in hybrid electric vehicles (HEVs). The particular focus of this work is the gear box of the drivetrain and mechanical faults of the electric motor. Permanent magnet motor magnet failures and rotor eccentricities are investigated and diagnosed. For induction motors, the presented mechanical fault cases are electrical rotor asymmetries (defective bars and end rings) and rotor eccentricities, as well. Apart from stationary operation, the presented techniques can also be applied to transient operating conditions. Measurement results are presented and discussed.
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

2005-10-03
2005-01-3399
A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.
Technical Paper

Disc Brake Rotor Squeal Suppression Using Dither Control

2001-04-30
2001-01-1605
“Dither” control recently has been experimentally demonstrated to be an effective means to suppress and prevent rotor mode disc brake squeal. Dither control employs a control effort at a frequency higher, oftentimes significantly higher, than the disturbance to be controlled. The control actuator used for the work presented in this paper is a piezoelectric stack actuator located within the piston of a floating caliper brake. The actuator is driven in open-loop control at a frequency greater than the squeal frequency. This actuator configuration and drive signal produces a small fluctuation about the mean clamping force of the brake. The control exhibits a threshold behavior, where complete suppression of brake squeal is achieved once the control effort exceeds a threshold value. This paper examines the dependency of the threshold effort upon the frequency of the dither control signal, applied to the suppression of a 5.6 kHz rotor squeal mode.
Technical Paper

Development of Wing Structural Weight Equation for Active Aeroelastic Wing Technology

1999-10-19
1999-01-5640
A multidisciplinary design study considering the impact of Active Aeroelastic Wing (AAW) technology on the structural wing weight of a lightweight fighter concept is presented. The study incorporates multidisciplinary design optimization (MDO) and response surface methods to characterize wing weight as a function of wing geometry. The study involves the sizing of the wing box skins of several fighter configurations to minimum weight subject to static aeroelastic requirements. In addition, the MDO problem makes use of a new capability, trim optimization for redundant control surfaces, to accurately model AAW technology. The response surface methodology incorporates design of experiments, least squares regression, and makes use of the parametric definition of a structural finite element model and aerodynamic model to build response surface equations of wing weight as a function of wing geometric parameters for both AAW technology and conventional control technology.
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Technical Paper

Demonstration of a Probabilistic Technique for the Determination of Aircraft Economic Viability

1997-10-01
975585
Over the past few years, modern aircraft design has experienced a paradigm shift from designing for performance to designing for affordability. This paper contains a probabilistic approach that will allow traditional deterministic design methods to be extended to account for disciplinary, economic, and technological uncertainty. The probabilistic approach was facilitated by the Fast Probability Integration (FPI) technique; a technique which allows the designer to gather valuable information about the vehicle's behavior in the design space. This technique is efficient for assessing multi-attribute, multi-constraint problems in a more realistic fashion. For implementation purposes, this technique is applied to illustrate how both economic and technological uncertainty associated with a Very Large Transport aircraft may be assessed.
Technical Paper

A Comparative Assessment of High Speed Rotorcraft Concepts (HSRC): Reaction Driven Stopped Rotor/Wing Versus Variable Diameter Tiltrotor

1997-10-01
975548
The objective of this paper is to illustrate the methods and tools developed to size and synthesize a stopped rotor/wing vehicle using a reaction drive system, including how this design capability is incorporated into a sizing and synthesis tool, VASCOMP II. This new capability is used to design a vehicle capable of performing a V-22 escort mission, and a sized vehicle description with performance characteristics is presented. The resulting vehicle is then compared side-by-side to a variable diameter tiltrotor designed for the same mission. Results of this analysis indicate that the reaction-driven rotor concept holds promise relative to alternative concepts, but that the variable diameter tiltrotor has several inherent performance advantages. Additionally, the stopped rotor/wing needs considerably more development to reach maturity.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

1996-10-01
965516
A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.
Technical Paper

An Assessment of a Reaction Driven Stopped Rotor/Wing Using Circulation Control in Forward Flight

1996-10-01
965612
The desire of achieving faster cruise speed for rotorcraft vehicles has been around since the inception of the helicopter. Many unconventional concepts have been considered and researched such as the advanced tilt rotor with canards, the tilt-wing, the folding tiltrotor, the coaxial propfan/folding tiltrotor, the variable diameter tiltrotor, and the stopped rotor/wing concept, in order to fulfill this goal. The most notable program which addressed the technology challenges of accomplishing a high speed civil transport mission is the High Speed Rotorcraft Concept (HSRC) program. Among the long list of potential configurations to fulfill the HSRC intended mission, the stopped rotor/wing is the least investigated due to the fact that the existing rotorcraft synthesis codes cannot handle this type of vehicle. In order to develop such a tool, a designer must understand the physics behind this unique concept.
X