Refine Your Search

Topic

Author

Search Results

Technical Paper

Split Ring Resonator-based Metamaterial with Total Bandgap for Reducing NVH in Electric Vehicles

2024-04-09
2024-01-2348
We propose a novel Split Ring Resonator (SRR) metamaterial capable of achieving a total (or complete) bandgap in the material’s band structure, thereby reflecting airborne and structure-borne noise in a targeted frequency range. Electric Vehicles (EVs) experience tonal excitation arising from switching frequencies associated with motors and inverters, which can significantly affect occupant perception of vehicle quality. Recently proposed metamaterial designs reflect airborne noise and structure-borne transverse waves over a band of frequencies, but do not address structure-borne longitudinal waves in the same band. To achieve isolation of acoustic, transverse, and longitudinal elastic waves associated with tonal frequencies, we propose a metamaterial super cell with transverse and longitudinal resonant frequencies falling in a total bandgap. We calculate the resonant frequencies and corresponding mode shapes using finite element (FE) modal analysis.
Journal Article

Security Analysis of Android Automotive

2020-04-14
2020-01-1295
In-vehicle infotainment (IVI) platforms are getting increasingly connected. Besides OEM apps and services, the next generation of IVI platforms are expected to offer integration of third-party apps. Under this anticipated business model, vehicular sensor and event data can be collected and shared with selected third-party apps. To accommodate this trend, Google has been pushing towards standardization among proprietary IVI operating systems with their Android Automotive platform which runs natively on the vehicle’s IVI platform. Unlike Android Auto’s limited functionality of display-projecting certain smartphone apps to the IVI screen, Android Automotive will have access to the in-vehicle network (IVN), and will be able to read and share various vehicular sensor data with third-party apps. This increased connectivity opens new business opportunities for both the car manufacturer as well as third-party businesses, but also introduces a new attack surface on the vehicle.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Technical Paper

Scale Similarity Analysis of Internal Combustion Engine Flows—Particle Image Velocimetry and Large-Eddy Simulations

2018-04-03
2018-01-0172
This presentation is an assessment of the turbulence-stress scale-similarity in an IC engine, which is used for modeling subgrid dissipation in LES. Residual stresses and Leonard stresses were computed after applying progressively smaller spatial filters to measured and simulated velocity distributions. The velocity was measured in the TCC-II engine using planar and stereo PIV taken in three different planes and with three different spatial resolutions, thus yielding two and three velocity components, respectively. Comparisons are made between the stresses computed from the measured velocity and stress computed from the LES resolved-scale velocity from an LES simulation. The results present the degree of similarity between the residual stresses and the Leonard stresses at adjacent scales. The specified filters are systematically reduced in size to the resolution limits of the measurements and simulation.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Technical Paper

The Flying Carpet: Aerodynamic High-Altitude Solar Reflector Design Study

2017-09-19
2017-01-2026
Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
Technical Paper

Exploration of Turbulent Atomization Mechanisms for Diesel Spray Simulations

2017-03-28
2017-01-0829
The atomization and initial spray formation processes in direct injection engines are not well understood due to the experimental and computational challenges associated with resolving these processes. Although different physical mechanisms, such as aerodynamic-induced instabilities and nozzle-generated turbulence and cavitation, have been proposed in the literature to describe these processes, direct validation of the theoretical basis of these models under engine-relevant conditions has not been possible to date. Recent developments in droplet sizing measurement techniques offer a new opportunity to evaluate droplet size distributions formed in the central and peripheral regions of the spray. There is therefore a need to understand how these measurements might be utilized to validate unobservable physics in the near nozzle-region.
Journal Article

Uncertainty Analysis of Static Plane Problems by Intervals

2015-04-14
2015-01-0482
We present a new interval-based formulation for the static analysis of plane stress/strain problems with uncertain parameters in load, material and geometry. We exploit the Interval Finite Element Method (IFEM) to model uncertainties in the system. Overestimation due to dependency among interval variables is reduced using a new decomposition strategy for the structural stiffness matrix and the nodal equivalent load vector. Primary and derived quantities follow from minimization of the total energy and they are solved simultaneously and with the same accuracy by means of Lagrangian multipliers. Two different element assembly strategies are introduced in the formulation: one is Element-by-Element, and the other resembles conventional assembly. In addition, we implement a new variant of the interval iterative enclosure method to obtain outer and inner solutions. Numerical examples show that the proposed interval approach guarantees to enclose the exact system response.
Journal Article

Combustion Recession after End of Injection in Diesel Sprays

2015-04-14
2015-01-0797
This work contributes to the understanding of physical mechanisms that control flashback, or more appropriately combustion recession, in diesel sprays. A large dataset, comprising many fuels, injection pressures, ambient temperatures, ambient oxygen concentrations, ambient densities, and nozzle diameters is used to explore experimental trends for the behavior of combustion recession. Then, a reduced-order model, capable of modeling non-reacting and reacting conditions, is used to help interpret the experimental trends. Finally, the reduced-order model is used to predict how a controlled ramp-down rate-of-injection can enhance the likelihood of combustion recession for conditions that would not normally exhibit combustion recession. In general, fuel, ambient conditions, and the end-of-injection transient determine the success or failure of combustion recession.
Journal Article

Technology Selection for Optimal Power Distribution Efficiency in a Turboelectric Propulsion System

2012-10-22
2012-01-2180
Turboelectric propulsion is a technology that can potentially reduce aircraft noise, increase fuel efficiency, and decrease harmful emissions. In a turbo-electric system, the propulsor (fans) is no longer connected to the turbine through a mechanical connection. Instead, a superconducting generator connected to a gas turbine produces electrical power which is delivered to distributed fans. This configuration can potentially decrease fuel burn by 10% [1]. One of the primary challenges in implementing turboelectric electric propulsion is designing the power distribution system to transmit power from the generator to the fans. The power distribution system is required to transmit 40 MW of power from the generator to the electrical loads on the aircraft. A conventional aircraft distribution cannot efficiently or reliably transmit this large amount of power; therefore, new power distribution technologies must be considered.
Technical Paper

Quantifying the Life Cycle Water Consumption of a Passenger Vehicle

2012-04-16
2012-01-0646
Numerous studies have pointed out the growing need to assess the availability of water sources in numerous regions around the world as future forecasts suggest that water demands will increase significantly while freshwater resources are being depleted. In this paper, we highlight the difference between water use versus consumption and analyze the life-cycle water consumption of a car from material extraction through production, use, and final disposition/end of life and determine a car's water footprint using data from the EcoInvent database as well as data collected from literature sources. Although water use is typically metered at the factory level, water consumption (i.e., water lost through evaporation and/or incorporation into a material, part, and/or product) is much harder to quantify. As shown in this paper, the difference can be an order of magnitude or more.
Technical Paper

Activity Based Approach to Manufacturing Systems Modeling

2010-04-12
2010-01-0277
This paper looks at a method for decomposing a manufactured product into what is called an “activity space.” The method uses an activity based costing scheme to structure the model and organize the information. It is discussed how the activity space is used to perform sustainability assessments of a manufactured product and the manufacturing process from different viewpoints and perspectives. The way in which the activity space is used to perform an assessment from several viewpoints is discussed.
Journal Article

Sustainable Manufacturing Analysis using an Activity Based Object Oriented Method

2009-11-10
2009-01-3229
This article begins by describing the need for a new method and tool for performing a sustainability assessment for manufacturing processes and systems. A brief literature survey is done to highlight the major existing methods and tools, their function, and their shortcomings. The article goes on to describe the general approach of the method before describing a computer aided tool that has been developed to implement the method. The article concludes with a walk through of a generic use case that describes where such a method would be useful and how such a tool would be implemented.
Journal Article

Superconducting Machines and Power Systems for Electric-Drive Aeropropulsion

2008-11-11
2008-01-2862
Societal demands of recent years have increasingly pressured the development of greener technologies in all sectors of the nation's transportation infrastructure, including that of civilian aviation. This study explores the concept of electric-drive aeropropulsion, aided by high-temperature superconducting technology, as an enabler for enhancing the environmental characteristics at the air-vehicle level. Potential improvements in the areas of aircraft noise, emissions, and energy efficiency are discussed in the context of supporting the latest strategic goals of leading governmental organizations.
Technical Paper

Development of an Automated Part Loading and Unloading System for a Cylindrical Die Thread Roller

2007-09-17
2007-01-3916
This paper outlines the design of a part transport and loading/unloading automation system for a cylindrical die thread roller, enumerating many of the design decisions encountered. Specifically, a transport tray system is proposed and prototyped as a benchmark for factory automation. Details of an automation system which will interface with the proposed transport tray system are discussed. A gripping system which accommodates a wide variety of fastener head styles is developed to work in conjunction with the tray concept, and prototyped with favorable results.
Technical Paper

Experimental Investigation of Dither Control on Effective Braking Torque

2003-05-05
2003-01-1617
Automotive brake squeal is a problem that has plagued the automotive industry for years. Many noise cancellation techniques have been published. One such technique is the use of an external dither signal, that has been shown to suppress automotive disc brake squeal in experiments with a brake dynamometer, but the effect of this control on the system's braking torque has yet to be determined. By imposing a high frequency disturbance normally into the brake pad, squeal is suppressed. There are many studies that lead to the conclusion of a lower effective braking torque due to the high frequency dither control signal. Under the assumption of Hertzian contact stiffness it has been speculated that the loss in braking torque is due to a lowering of the average normal force. There has also been work done that proves that the application of a dither signal in the normal direction eliminates the ‘stick-slip’ oscillation that causes brake squeal by an effective decrease in the friction force.
Technical Paper

Georgia Tech's FutureTruck Split-Parallel Hybrid SUV Design

2003-03-03
2003-01-1270
The Georgia Tech FutureTruck Team has designed a strong parallel split-hybrid powertrain for the model year 2002 Ford Explorer SUV. The modified powertrain uses a Lincoln LS 3.0L, V-6, DOHC, aluminum engine driving the rear axle. An AC-150 from AC Propulsion is coupled to the front wheels through a 3.75:1 Auburn Gear speed reducer. This split-hybrid structure fits well into the Explorer and is to manufacture. The interior cabin has been maintained in a stock configuration by carefully integrating the added instrumentation and electric drive controls into the dash and console. The toque-blending hybrid electric control is designed to be charge sustaining such that the refueling procedures match those of the stock vehicle. When fully operational, this powertrain is expected to yield a net 25% increase in fuel efficiency while lowering emissions without any sacrifice in customer acceptability.
Technical Paper

Impact of Configuration and Requirements on the Sonic Boom of a Quiet Supersonic Jet

2002-11-05
2002-01-2930
Market forecasts predict a potentially large market for a Quiet Supersonic Business Jet provided that several technical hurdles are overcome prior to fielding such a vehicle. In order to be economically viable, the QSJ must be able to fly at supersonic speeds overland and operate from regional airports in addition to meeting government noise and emission requirements. As a result of these conflicting constraints on the design, the process of selecting a configuration for low sonic boom is a difficult one. Response Surface Methodology along with physics-based analysis tools were used to create an environment in which the sonic boom can be studied as a function of design and mission parameters. Ten disciplinary codes were linked with a sizing and synthesis code by using a commercial wrapper in order to calculate the required responses with the desired level of fidelity.
Technical Paper

MODELING AND CONTROL OF TRANSIENT ENGINE CONDITIONS

2001-10-01
2001-01-3231
In gasoline direct injection engines, fuel is injected into the port walls and the valve. During the engine startup cycle, the temperature of these parts is not adequate to evaporate all the fuel that impacts the walls. As a result, a fraction of the injected fuel does not contribute to the combustion cycle. This fraction forms fuel puddles (wall-wetting) and a portion of it passes to the crankcase. The efficiency of the engine during the startup cycle is decreased and hydrocarbon emissions increased. It is obvious that a control strategy is necessary to minimize the effects of this transient performance of the engine. This paper investigates a modeling framework for the valve, and simulation results validate model performance when compared to available experimental data. The simulation studies lead to a conceptual control design, which is briefly outlined.
Technical Paper

Disc Brake Rotor Squeal Suppression Using Dither Control

2001-04-30
2001-01-1605
“Dither” control recently has been experimentally demonstrated to be an effective means to suppress and prevent rotor mode disc brake squeal. Dither control employs a control effort at a frequency higher, oftentimes significantly higher, than the disturbance to be controlled. The control actuator used for the work presented in this paper is a piezoelectric stack actuator located within the piston of a floating caliper brake. The actuator is driven in open-loop control at a frequency greater than the squeal frequency. This actuator configuration and drive signal produces a small fluctuation about the mean clamping force of the brake. The control exhibits a threshold behavior, where complete suppression of brake squeal is achieved once the control effort exceeds a threshold value. This paper examines the dependency of the threshold effort upon the frequency of the dither control signal, applied to the suppression of a 5.6 kHz rotor squeal mode.
X