Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Evaluation of a Design Support Tool Incorporating Sensory Performance Model of Ride Comfort for Conceptual Design of Controlled Suspensions

2024-04-09
2024-01-2292
The objective of this study is to introduce and assess a computational tool designed to facilitate product development via sensory scores, which serve as a quantifiable representation of human sensory experiences. In the context of designing ride comfort performance, the specialized terminology—either technical or sensory—often served as a barrier to comprehension among the diverse set of specialists constituting the multidisciplinary team. In a previous study by the authors introduced a tool that incorporated a model of sensory performance, utilizing sensory scores as universally comprehensible metrics. However, the tool had yet to be appraised by a genuine cross-functional team. In this study, the tool underwent evaluation through a user-testing process involving twenty-five cross-functional team members engaged in the conceptual design phase at an automotive manufacturing company.
Technical Paper

Measurement of Liquid Fuel Film Attached to the Wall in a Port Fueled SI Gasoline Engine

2023-10-24
2023-01-1818
Liquid fuel attached to the wall surface of the intake port, the piston and the combustion chamber is one of the main causes of the unburned hydrocarbon emissions from a port fueled SI engine, especially during transient operations. To investigate the liquid fuel film formation process and fuel film behavior during transient operation is essential to reduce exhaust emissions in real driving operations, including cold start operations. Optical techniques have been often applied to measure the fuel film in conventional reports, however, it is difficult to apply those previous techniques to actual engines during transient operations. In this study, using MEMS technique, a novel capacitance sensor has been developed to detect liquid fuel film formation and evaporation processes in actual engines. A resistance temperature detector (RTD) was also constructed on the MEMS sensor with the capacitance sensor to measure the sensor surface temperature.
Technical Paper

Effects of Different Driving Behavior during Actual Road Driving on Ammonia Emissions from Gasoline Vehicles

2023-09-29
2023-32-0095
Three-way catalysts are used in gasoline vehicles for simultaneous purifying nitrogen oxide, carbon monoxide, and hydrocarbon in recent years. However, the reduction of ammonia emission generated in the three-way catalyst is pressing issue. In EURO 7, ammonia will also be subject to the Real Driving Emissions regulation, and its emissions must be reduced. Previous studies have shown that ammonia emissions are higher under fuel-rich conditions, suggesting that differences in driving behavior have a significant impact on ammonia emissions in real-world driving, which includes various driving environments. In this study, driving tests were conducted on a direct- injection gasoline vehicle equipped with a three-way catalyst and Portable Emission Measurement System and Sensor-based Emission Measurement System to investigate the actual ammonia emissions on actual roads.
Technical Paper

Numerical Investigation of Knocking in a Small Two-Stroke Engine with a High Compression Ration to Improve Thermal Efficiency

2023-09-29
2023-32-0079
This study aimed to achieve both a high compression ratio and low knock intensity in a two-stroke engine. Previous research has suggested that knock intensity can be reduced by combining combustion chamber geometry and scavenging passaging design for the same engine specifications with a compression ratio of 13.7. In this report, we investigate whether low knock intensity can be achieved at compression ratios of 14.4 and 16.8 by adjusting the combustion chamber geometry and scavenging passage design. As a result, the mechanism by which combustion chamber geometry and scavenging passage design change knock intensity was clarified.
Technical Paper

Engine Knocking Detection by Measuring Cylinder Pressure, Combustion Flame, Vibration and Radiation Noise

2023-09-29
2023-32-0080
Knocking is an important issue in improving the efficiency of spark ignition engines. It can be detected by photographing with high-speed cameras or measuring in-cylinder pressure or engine vibration or engine radiation sound. However, these methods each have the problems for example sensor damage risk or necessity of machining the engine. In this paper, we propose the efficient measurement method and the effective evaluation method with the restricted measurement results for engine knocking detection by utilizing the simultaneous measurement results of knocking with these sensors.
Technical Paper

Effect of Olefin Component Mixed to Gasoline on Thermal Efficiency in EGR Diluted Conditions Using Single-Cylinder Engine

2023-09-29
2023-32-0084
In internal combustion engine development, the ongoing research can be mainly classified into two categories based on the purpose: limiting exhaust emissions and searching for alternative fuels. One of the effective approaches reduce emissions is the improvement of thermal efficiency. Certain types of alternative fuels derived from renewable resources were estimated to confirm the thermal efficiency. This study uses a single-cylinder engine added with olefin and oxygenated additive fuel, such as 1-hexene, ethanol, and ETBE, to evaluate the parameters that affect thermal efficiency. Furthermore, the effects of various additive fuels are summarized and essential information is provided for determining next- generation fuel composition.
Technical Paper

A study of Multi-Functional Membrane Filters made of Fine Catalyst Particles

2023-09-29
2023-32-0125
A multi-functional membrane filter was developed through deposition of agglomerated Three-Way Catalyst particles with a size of 1 ~ 2 microns on the conventional bare particulate filter. The filtration efficiency reaches almost 100 % from the beginning of soot trapping with a low pressure drop and both reductions of NO and CO emission were achieved.
Technical Paper

Effects of pre-chamber specifications on lean burn operation in a pre-chamber engine with fuel reformed gas

2023-09-29
2023-32-0007
Lean combustion has been well known to be an effective method to improve the thermal efficiency. However, leaner mixture is prone to cause the unstable combustion and poorer unburned hydrocarbon (UTHC) emissions. Pre-chamber turbulent jet combustion has been proved to enhance the combustion stability under ultra-lean conditions. However, more NOx is formed during the combustion, resulting in the fact that the tailpipe NOx emission is too high to be still not available for the real application. In this report, in order to achieve a higher air excess ratio while keeping lower UTHC emissions, and especially NOx emission, a new combustion technique which combined pre-chamber jet combustion with fuel reforming was proposed and experimentally demonstrated on a pre-chamber engine.
Technical Paper

Numerical Investigation of Multi-Stage HCCI Combustion with Small Chamber Inside Piston

2023-09-29
2023-32-0020
Homogeneous charge compression ignition (HCCI) combustion is promising for not only high thermal efficiency but also reducing nitrogen oxides (NOx) and PM simultaneously. However, the operational range of the HCCI combustion is limited because of some issues, such as poor control of ignition timing and knocking by the excessive rate of pressure rise. In this study, a new combustion system based on the HCCI combustion process is proposed based on the authors' previous experimental work. This combustion system has a divided combustion chamber of two parts, one is small and the other is large. The most significant feature is the small chamber inside the piston. At first, combustion takes place in the small chamber, and then the burned gas is ejected into the large chamber to ignite the mixture in the large chamber.
Technical Paper

Research on Super-Lean Burn Spark Ignition Engine with In-Cylinder Water Injection using Gasoline Surrogate Fuels

2023-09-29
2023-32-0055
The combination of super-lean burn spark ignition engine (excess air ratio λ ≈ 2) and in-cylinder water injection (WI) makes it possible to achieve thermal efficiency higher than 50%. Toward future fuel diversification including carbon-neutral fuels, technologies to improve SI engine thermal efficiency applicable to various fuels are required. In this study, the effect of in-cylinder WI on SI engine performance with a compression ratio of 17 and λ = 1.85 is investigated using premium gasoline, 5 components surrogate fuels for premium gasoline (S5H), and for regular gasoline (S5R). In the case of premium gasoline and S5H, spark timing can be advanced to MBT (minimum advance for best torque) by WI and gross indicated thermal efficiency (gITE) increases to 51.2% (premium gasoline) at water/fuel weight ratio (W/F) = 57.7% and 50.8% (S5H) at W/F = 62.9%. In the case of S5R, on the other hand, a strong knock forces a large spark retard at no-water condition.
Technical Paper

Improvement of Post-Oxidation Phenomena with Lambda-split, Post-Injection and Mixing Improvement of Exhaust Gas in Turbocharged GDI Engine

2023-09-29
2023-32-0094
Post-oxidation has been used to enhance the chemical reactions in the exhaust gas pipes, leading to the activations of the turbocharger and catalyst at cold state. In this research, a detailed study of the various mechanisms for post-oxidation is performed. For the post-oxidation activation, the unburned gas species (CO, THC, H2) in the exhaust manifold must be produced by some methodologies, such as scavenging, lambda-split, and post-injection. The required amount of O2 concentration can be either supplied by the scavenging (valve overlap tuning) or the secondary air injection (SAI) system. Mixing the species is also an important key to promoting post- oxidation, and an internal bypass adapter with a modified exhaust adapter shape was developed and evaluated.
Technical Paper

Experimental Study on the Relationship between Combustion and Vibration in a Gasoline Engine Part 2 Characteristics of Structure’s Exciting Force and Overall Research Summary

2023-05-08
2023-01-1146
Following Part 1 of the previous study, this paper reports the structure’s exciting force and summarize the overall research results. An experimental study was conducted to clarify the relationship between engine combustion and vibration, and to establish technology to suppress it. This study focused on the vehicle interior noise caused by combustion in which vibration transmission is the main component at high speed and high load region. A phenomenon in which both the combustion’s exciting force and the structure’s exciting force are combined is defined as vehicle interior noise caused by combustion. Conventionally, combustion and vibration are often discussed in terms of the average cycle, but considering the nonstationary property of vibration, in this paper analyzed the structure’s exciting force characteristics for vibration in cycle-by-cycle. Analysis was conducted using the combustion indicators clarified in the previous study.
Technical Paper

Experimental Study on the Relationship between Combustion and Vibration in a Gasoline Engine Part1 Study Overview and the Characteristics of Combustion’s Exciting Force

2023-04-11
2023-01-0430
This study focused on the vehicle interior noise caused by combustion in which vibration transmission is the main component at high speed and high load region. A phenomenon in which both the combustion’s exciting force and the structure’s exciting force are combined is defined as vehicle interior noise caused by combustion. Conventionally, combustion and vibration are often discussed in terms of the average cycle, but considering the nonstationary property of vibration, in this paper analyzed the combustion characteristics for cycle-by-cycle and investigated indicators for the combustion’s exciting force. The engine vibration is affected by heat release characteristics even with the same engine structure specifications. The heat release characteristics were determined as indicators for the combustion’s exciting force. Transfer Path Analysis (TPA) revealed that there is piston transmission in the target frequency band.
Technical Paper

Real-world Cold Start Emissions Evaluation for Direct-injection Gasoline Vehicle with PEMS and SEMS

2023-04-11
2023-01-0379
The Real Driving Emissions (RDE) test method has been introduced after 2017 to regulate the vehicle emissions in real-world driving situations by means of on-board emissions measurements. This paper aims to estimate the detailed on-board gaseous emissions from a light-duty direct-injection gasoline vehicle simultaneously using both portable emissions measurement system (PEMS) and sensor-based emissions measurement system (SEMS). Test route is typical urban route and tests environment factors followed the RDE regulation. Carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and ammonia (NH3) emissions were analyzed according to cold start once and followed by hot start conditions. The mass emissions of gas components were calculated based on the exhaust flowrate obtained from OBD parameters, NH3 emission was calculated based on NO sensor’s data. Two drivers participated in the tests and their emissions difference has been compared.
Technical Paper

Real World Emissions Analysis Using Sensor-based Emissions Measurement System for Light-duty Direct-Injection Gasoline Vehicle

2022-03-29
2022-01-0572
In recent years, particulate matter (PM) emitted from direct-injection gasoline vehicles is becoming an increasingly concerning problem. In addition, it is often reported that ammonia (NH3) is emitted from gasoline vehicles equipped with a three-way catalyst. These emissions might be largely emitted especially when driving in on-road driving conditions. In this study, we investigated the emissions, NOx, NH3, and PM/PN (particulate number) of a light-duty direct-injection gasoline vehicle when driving on actual roads. Using a small direct-injection gasoline vehicle equipped with a three-way catalyst, experiment was conducted 8 times on the same route, and these emissions were measured. In this study, vehicle specific power (VSP) was introduced, which can be calculated using vehicle parameters, vehicle speed, and road gradient. The effects of parameters acquired through on-board diagnostics (OBD) port and VSP on emissions were investigated.
Technical Paper

Numerical and Experimental Analysis of Abnormal Combustion in a SI Gasoline Engine with a Re-Entrant Piston Bowl and Swirl Flow

2022-01-09
2022-32-0038
Some SI (spark-ignition) engines fueled with gasoline for industrial machineries are designed based on the conventional diesel engine in consideration of the compatibility with installation. Such diesel engine-based SI engines secure a combustion chamber by a piston bowl instead of a pent-roof combustion chamber widely applied for SI engines for automobiles. In the development of SI engines, because knocking deteriorates the power output and the thermal efficiency, it is essential to clarify causes of knocking and predict knocking events. However, there has been little research on knocking in diesel engine-based SI engines. The purpose of this study is to elucidate knocking phenomena in a gasoline engine with a re-entrant piston bowl and swirl flow numerically and experimentally. In-cylinder visualization and pressure analysis of knock onset cycles have been experimentally performed. Locations of autoignition have been predicted by 3D-CFD analysis with detailed chemical reactions.
Technical Paper

Analysis of Cylinder to Cylinder Variations in a Turbocharged Spark Ignition Engine at lean burn operations

2022-01-09
2022-32-0044
In recent years, the improvement in the fuel efficiency and reduction in CO2 emission from internal combustion engines has been an urgent issue. The lean burn technology is one of the key technologies to improve thermal efficiency of SI engines. However, combustion stability deteriorates at lean burn operations. The reduction in cycle-to-cycle and cylinder-to-cylinder variations is one of the major issues to adapt the lean burn technique for production engines. However, the details of the causes and mechanisms for the combustion variations under the lean burn operations have not been cleared yet. The purpose of this study is to control cylinder to cylinder combustion variation. A conventional turbocharged direct injection SI engine was used as the test engine to investigate the effect of engine control parameters on the cylinder to cylinder variations. The engine speed is set at 2200 rpm and the intake pressure is set at 58, 78, 98 kPa respectively.
Technical Paper

Study on Fuel-Saving Durability of Ultra-Low Viscosity 0W-8 Gasoline Engine Oil

2021-04-06
2021-01-0566
The JASO GLV-1 standard was introduced in Japan for 0W-8 ultra-low viscosity gasoline engine oil to improve fuel economy. Fuel economy targets are specified for new oil but not for aged oil. In contrast, Sequence VI in the ILSAC GF-6 standard requires fuel economy improvement for both new and aged oils. This test simulates fuel economy improvement after 6400 km (FEI 1) and 16000 km (FEI 2) of driving based on US fuel economy certification testing. Currently, 0W-8 is not included in the ILSAC standard and the fuel-saving durability of 0W-8 has not been investigated. To include ultra-low viscosity oil like 0W-8 in future engine oil standards, it is necessary to know its fuel-saving durability and to examine the evaluation test method. This study focused on the fuel-saving durability of 0W-8 with or without the Mo friction modifier and considered the evaluation method.
Technical Paper

Investigation on Relationship between LSPI and Lube Oil Consumption and Its Countermeasure

2021-04-06
2021-01-0567
LSPI (Low speed pre-ignition) is a serious issue in highly boosted gasoline engines. The causes have been studied and lube oil affects the onset. In order to examine the effect of lubricating oil consumption on super knock caused by pre-ignition, measurements of in-cylinder pressure, temperature, oil consumption by sulfur trace at steady and transient conditions were conducted. Also, new piston ring pack was applied to reduce both of blow-by gas and oil consumption. As a result, accumulated oil during deceleration was found to cause pre-ignition after acceleration. The pre-ignition frequency is much higher than in steady condition, however, the amount of oil does not directly affect pre-ignition frequency, but dilution of oil and evaporation of oil/fuel and other parameters, such as temperature, pressure, and oil additives determine pre-ignition onset. In order to see the mechanism of pre-ignition onset, numerical simulations were conducted.
Technical Paper

Investigation on Effect of Offset Orifice Nozzle on Diesel Combustion Characteristics

2020-09-15
2020-01-2038
Compression ignition engines provide superior thermal efficiency over other internal combustion engines. Unfortunately the combustion process is diffusive combustion, meaning a lot of fuel is impinged the on the piston and cylinder wall. This creates cooling loss coupled with smoke, CO and THC. Minimization of the nozzle orifice diameter is a simple method widely used to shorten spray penetration. However, decreasing the nozzle orifice diameter also decreases fuel flow rate resulting in a prolonged injection and combustion process and reducing thermal efficiency. An offset orifice nozzle causes less fuel impingement by shorter fuel spray penetration without significant reduction of fuel flow rate. The offset orifice nozzle was made by shifting its alignment from the center of the sac to the edge of the sac following the swirl direction. A counterbore design was applied to maintain constant orifice length.
X