Refine Your Search

Topic

Author

Search Results

Technical Paper

Comparing the NVH behaviour of an innovative steel-wood hybrid battery housing design to an all aluminium design

2024-06-12
2024-01-2949
The production of electric vehicles (EVs) has a significant environmental impact, with up to 50 % of their lifetime greenhouse gas potential attributed to manufacturing processes. The use of sustainable materials in EV design is therefore crucial for reducing their overall carbon footprint. Wood laminates have emerged as a promising alternative due to their renewable nature. Additionally, wood-based materials offer unique damping properties that can contribute to improved Noise, Vibration, and Harshness (NVH) characteristics. In comparison to conventional materials such as aluminum, ply wood structures exhibit beneficial damping properties. The loss factor of plywood structures with a thickness below 20 mm ranges from 0.013 to 0.032. Comparable aluminum structures however exhibit only a fraction of this loss factor with a range between 0.002 and 0.005.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

Exhaust Aftertreatment Technologies for PN Reduction of Motorcycles

2023-10-24
2023-01-1846
The objective of this experimental investigation was to analyze the effect of various exhaust gas aftertreatment technologies on particulate number emissions (PN) of an MPFI EU5 motorcycle. Specifically, three different aftertreatment strategies were compared, including a three-way-catalyst (TWC) with LS structure as the baseline, a hybrid catalyst with a wire mesh filter, and an optimized gasoline particulate filter (GPF) with three-way catalytic coating. Experimental investigations using the standard test cycle WMTC performed on a two-wheeler chassis dynamometer, while the inhouse particulate sampling system was utilized to gather information about size-dependent filtering efficiency, storage, and combustion of nanoparticles. The particulate sampling and measuring system consist of three condensation particle counters (CPCs) calibrated to three different size classes (SPN4, SPN10, SPN23).
Technical Paper

Lifecycle Carbon Footprint Calculation of Hand-Held Tool Propulsion Concepts

2023-04-11
2023-01-0553
Following the recent trend in the automotive industry, hybrid and pure electric powertrain systems are more and more preferred over conventional combustion powertrain systems due to their significant potential to reduce greenhouse-gas emissions. Although electric powertrains do not produce direct emissions during their operational time, the indirect emissions over their whole life cycle have to be taken into consideration. In this direction, the carbon footprint due to the electrification of the hand-held power tool industry needs to be examined in the preliminary design phase. In this paper, after defining the carbon footprint calculation framework, assumptions and simplifications used for the calculations, a direct comparison of the total carbon dioxide equivalent (CO2eq) emissions of three equivalent power and range powertrain systems - a combustion-driven, a hybrid-driven, and a cordless electric-driven - is presented.
Technical Paper

Identification and Verification of Attack-Tree Threat Models in Connected Vehicles

2022-12-22
2022-01-7087
As a result of the ever-increasing application of cyber-physical components in the automotive industry, cybersecurity has become an urgent topic. Adapting technologies and communication protocols like Ethernet and WiFi in connected vehicles yields many attack scenarios. Consequently, ISO/SAE 21434 and UN R155 (2021) define a standard and regulatory framework for automotive cybersecurity, Both documents follow a risk management-based approach and require a threat modeling methodology for risk analysis and identification. Such a threat modeling methodology must conform to the Threat Analysis and Risk Assessment (TARA) framework of ISO/SAE 21434. Conversely, existing threat modeling methods enumerate isolated threats disregarding the vehicle’s design and connections. Consequently, they neglect the role of attack paths from a vehicle’s interfaces to its assets.
Technical Paper

Design and Experimental Characterization of a Parallel-Hybrid Powertrain for Hand-held Tools

2022-03-29
2022-01-0604
On the basis of small hybrid powertrain investigations in hand-held power tools for fuel consumption and emissions reduction, the prototype hybrid configuration of a small single-cylinder four-stroke internal combustion engine together with a brushless DC electric motor is built and measured on the testbench in terms of efficiency and emissions but also torque and power capabilities. The onboard energy storage system allows the combustion engine electrification for controlling the fuel amount and the combustion behavior while the electric motor placement instead of the pull-start and flywheel allows for start-stop of the system and load point shifting strategy for lower fuel consumption. The transient start-up results as well as the steady-state characterization maps of the system can set the limits on the fuel consumption reduction for such a hybrid tool compared with the baseline combustion-driven tool for given load cycle characteristics.
Technical Paper

An Approach for Evaluating Rolling Resistance in Kart Racing Tires

2021-04-06
2021-01-0936
Drivetrain electrification is increasing in the kart racing sector since noise emissions are an important factor in urban areas. To improve range, it has become necessary to optimize the rolling resistance of kart racing tires. This paper introduces a parameter study for small bias-ply tires which are used in kart racing and investigates the effect of these parameters on rolling resistance. In recent literature, rolling resistance is mostly examined in radial passenger car tires. Most testing devices are limited to rim sizes from ten inches upwards. In this study, a test rig was developed with focus on low cost and small rim sizes. This self-developed test rig was validated through a comparison with an approved test rig according to ISO 18164 standard. A parameter study was conducted to investigate the effect of changes in the construction of the tire. These changes affect the warp count of the carcass fabric and the crown angle of the different plies.
Technical Paper

A Concept Investigation Simulation Model on Hybrid Powertrains for Handheld Tools

2020-11-30
2020-32-2316
Amid the increasing demand for higher efficiency in combustion driven handheld tools, the recent developments in electric machine technology together with the already existing benefits of small combustion engines for these applications favor the investigation of potential advantages in hybrid powertrain tools. This concept-design study aims to use a fully parametric, system-level simulation model with exchangeable blocks, created with a power-loss approach in Matlab and Simulink, in order to examine the potential of different hybrid configurations for different tool load cycles. After the model introduction, the results of numerous simulations for 36 to 100 cc engine displacement will be presented and compared in terms of overall system efficiency and overall powertrain size. The different optimum hybrid configurations can show a reduction up to 30 % in system’s brake specific fuel consumption compared to the baseline combustion engine driven model.
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound. Considering the generic test configuration of turbulent pipe flow, the present study investigates in particular the scope and the limits of incompressible Large-Eddy Simulation in predicting the evolution of turbulent sound sources to be supplied as source terms into the acoustic analogy of Lighthill.
Technical Paper

Experimental Investigation of the Influence of Ignition System Parameters on Combustion in a Rapid Compression-Expansion Machine

2020-04-14
2020-01-1122
Lean burn combustion concepts with high mean effective pressures are being pursued for large gas engines in order to meet future stringent emission limits while maintaining high engine efficiencies. Since severe boundary conditions for the ignition process are encountered with these combustion concepts, the processes of spark ignition and flame initiation are important topics of applied research, which aims to avoid misfiring and to keep cycle-to-cycle combustion variability within reasonable limits. This paper focuses on the fundamental investigation of early flame kernel development using different ignition system settings. The investigations are carried out on a rapid compression-expansion machine in which the spark ignition process can be observed under engine-like pressure and excess air ratio conditions while low flow velocities are maintained.
Technical Paper

Impact of Rim Orientation on Road Vehicles Aerodynamics Simulations

2020-04-14
2020-01-0674
Aerodynamic CFD simulations in the automotive industry, which are based on the steady-state RANS (Reynolds-averaged Navier-Stokes) approach typically utilize approximate numerical methods to account for rotating wheels. In these methods, the computational mesh representing the rim geometry remains stationary, and the influence of the wheel rotation on the air flow is modelled. As the rims are considered only in one fixed rotational position (chosen arbitrarily in most cases), the effects of the rim orientation on the aerodynamic simulation results are disregarded and remain unquantified. This paper presents a numerical sensitivity study to examine the impact of the rim orientation position on the aerodynamic parameters of a detailed production vehicle. The simulations are based on the steady-state RANS approach.
Technical Paper

Robot-Based Fast Charging of Electric Vehicles

2019-04-02
2019-01-0869
Automated, conductive charging systems enable both, the transmission of high charging power for long electric driving distances as well as comfortable and safe charging processes. Especially by the use of heavy and unhandy cables for fast charging, these systems offer user friendly vehicle charging - in particularly in combination with autonomously driving and parking vehicles. This paper deals with the definition of requirements for automated conductive charging stations with standard charging connectors and vehicle inlets and the development of a fully-automated charging robot for electric and plug-in hybrid vehicles. In cooperation with the project partners BMW AG, MAGNA Steyr Engineering, KEBA AG and the Institute of Automotive Engineering at Graz University of Technology, the development and implementation of the prototype took place in the course of a governmental funded research project titled “Comfortable Mobility by Technology Integration (KoMoT)”.
Technical Paper

New Approaches to Lube Oil Consumption Measurement Based on the Tracer Method

2019-01-15
2019-01-0077
In the research and development of internal combustion engines, there are several drivers for developing an accurate online lube oil consumption (LOC) measurement system. Lube oil consumption is considered to be a root cause of hydrocarbon and particle emissions and lubricating oil autoignition. It also negatively influences the life cycle cost for engine operators. Highly accurate measurement of lube oil consumption must be possible before it can be reduced - or rather optimized - to levels stakeholders will require in the future. State-of-the-art methods such as gravimetric and volumetric measurements are not fully satisfactory for several reasons. Generally, offline LOC measurement is no longer suitable for fast and accurate measuring cycles, oil condition monitoring and wear monitoring. At present, tracer methods are considered to be the most promising approach. However, current tracer methods have their downsides as well.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Journal Article

Improved Modeling of Near-Wall Heat Transport for Cooling of Electric and Hybrid Powertrain Components by High Prandtl Number Flow

2017-03-28
2017-01-0621
Reynolds-averaged Navier-Stokes (RANS) computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+< 5). As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region.
Technical Paper

Analysis of Conventional Motorcycles with the Focus on Hybridization

2016-11-08
2016-32-0031
The release of the “Regulation No. 168/2013” for the approval and market surveillance of two- or three-wheel motorcycles and quadricycles of the European Union started a new challenge for the motorcycle industry. One goal of the European Union is to achieve emission parity between passenger cars (EURO 6) and motorcycles (EURO 5) in 2020. The hybridization of motorcycle powertrains is one way to achieve these strict legislation limits. In the automotive sector, hybridization is well investigated and has already shown improvements of fuel consumption, efficiency and emission behavior. Equally, motorcycle applications have a high potential to improve efficiency and to meet customer needs as fun to drive as well. This paper describes a methodical approach to analyze conventional motorcycles regarding the energy and power demand for different driving cycles and driving conditions. Therefore, a dynamic or forward vehicle simulation within MATLAB Simulink is used.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Journal Article

A Model-Based Configuration Approach for Automotive Real-Time Operating Systems

2015-04-14
2015-01-0183
Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along the entire product development. The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL exchange format files.
Technical Paper

A Versatile Approach for an ISO26262 Compliant Hardware-Software Interface Definition with Model-Based Development

2015-04-14
2015-01-0148
Increasing demands for safety, security, and certifiability of embedded automotive systems require additional development effort to generate the required evidences that the developed system can be trusted for the application and environment it is intended for. Safety standards such as ISO 26262 for road vehicles have been established to provide guidance during the development of safety-critical systems. The challenge in this context is to provide evidence of consistency, correctness, and completeness of system specifications over different work-products. One of these required work-products is the hardware-software interface (HSI) definition. This work-product is especially important since it defines the interfaces between different technologies. Model-based development (MBD) is a promising approach to support the description of the system under development in a more structured way, thus improving resulting consistency.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
X