Refine Your Search

Topic

Author

Search Results

Technical Paper

A PN-Measurement System for Small Engine Applications

2023-10-24
2023-01-1809
Particulates are among the most harmful emission components of internal combustion engines (ICE)). Thus, emission limits have been widely introduced, e.g., for light- and heavy-duty vehicles. Although there are still engine applications without particulate limitations, the measurement of particulate mass (PM) and particulate number (PN) emissions is therefore of special interest for the development and operation of ICE. For this purpose, a measurement system for PN consisting of a custom-built sample conditioning and dilution system, and a TSI 3790-A10 [1] condensation particle counter (CPC) as particle number counter (PNC) was designed and built. In this work, we present the conditioning and dilution system, the operational parameters, and results from the particle concentration reduction factor (PCRF) calibration.
Technical Paper

Impacts of eFuels on Solid and Gaseous Emissions of Powersport Two-Wheelers

2023-10-24
2023-01-1838
As alternative to electrification or carbon free fuels such as hydrogen, CO2-neutral fuels have been researched aiming to decrease the impact of fossil energy sources on the environment. Despite the potential benefit of capturing CO2 emission after combustion for own fuel production, the so-called eFuels also benefit by using a green source of energy during their fabrication. Among all the possibilities for eFuels, alcohols, ethers (such as MTBE and ETBE) and alternative hydrocarbons have shown positive impacts regarding emission reduction and performance when compared to standard gasoline. Previously in [1] and [2], synthetic fuels and methanol blends were tested at steady state conditions in order to verify advantages and drawbacks relative to gasoline, for power-sport motorcycles.
Technical Paper

Exhaust Aftertreatment Technologies for PN Reduction of Motorcycles

2023-10-24
2023-01-1846
The objective of this experimental investigation was to analyze the effect of various exhaust gas aftertreatment technologies on particulate number emissions (PN) of an MPFI EU5 motorcycle. Specifically, three different aftertreatment strategies were compared, including a three-way-catalyst (TWC) with LS structure as the baseline, a hybrid catalyst with a wire mesh filter, and an optimized gasoline particulate filter (GPF) with three-way catalytic coating. Experimental investigations using the standard test cycle WMTC performed on a two-wheeler chassis dynamometer, while the inhouse particulate sampling system was utilized to gather information about size-dependent filtering efficiency, storage, and combustion of nanoparticles. The particulate sampling and measuring system consist of three condensation particle counters (CPCs) calibrated to three different size classes (SPN4, SPN10, SPN23).
Technical Paper

Potential for Particulate Reduction by Use of eFuels in MPFI Engines

2023-10-24
2023-01-1848
Currently, emission regulations for the LVs using standard spark ignited ICEs considering only gaseous pollutants, just as CO, HC and NOx. Following the upcoming legislation for personal vehicles sector, the LVs might also include limits of PN and PM. Regarding fuel injection strategies, the MPFI which was previously excluded from particulate control will be incorporated into the new regulation [1]. In terms of social harm, there will be a necessity to reduce engine particulate emissions, as they are known for being carcinogenic substances [2, 3, 4]. Generally, the smaller the particulate diameter, the more critical are the damages for human health therefore, the correct determination of PN and particulate diameter is essential. Beside future challenges for reducing and controlling particulates, the reduction of fossil fuel usage is also an imminent target, being the replacement by eFuels one of the most promising alternatives.
Technical Paper

A Comparison of Virtual Sensors for Combustion Parameter Prediction of Gas Engines Based on Knock Sensor Signals

2023-04-11
2023-01-0434
Precise prediction of combustion parameters such as peak firing pressure (PFP) or crank angle of 50% burned mass fraction (MFB50) is essential for optimal engine control. These quantities are commonly determined from in-cylinder pressure sensor signals and are crucial to reach high efficiencies and low emissions. Highly accurate in-cylinder pressure sensors are only applied to test rig engines due to their high cost, limited durability and special installation conditions. Therefore, alternative approaches which employ virtual sensing based on signals from non-intrusive sensors retrieved from common knock sensors are of great interest. This paper presents a comprehensive comparison of selected approaches from literature, as well as adjusted or further developed methods to determine engine combustion parameters based on knock sensor signals. All methods are evaluated on three different engines and two different sensor positions.
Technical Paper

Measuring Brake Wear Particles with a Real-Driving Emissions Sampling System on a Brake Dynamometer

2022-09-19
2022-01-1180
Brake wear particles are recognized as one of the dominant sources of road transport particulate matter emissions and are linked to adverse health effects and environmental impact. The UNECE mandated the Particle Measurement Program to address this issue, by developing a harmonized sampling and measurement methodology for the investigation of brake wear particles on a brake dynamometer (dyno). However, although the brake dyno approach with tightly controlled test conditions offers good reproducibility, a multitude of changing vehicle and surrounding conditions make real-driving emissions measurement a highly relevant task. Here we show two different prototypes for on-road particle measurement with minimal impact of the measurement setup on the emission behavior, tested on a brake dyno.
Technical Paper

Development of a Virtual Sensor to Predict Cylinder Pressure Signal Based on a Knock Sensor Signal

2022-03-29
2022-01-0627
Virtual sensing refers to the processing of desired physical data based on measured values. Virtual sensors can be applied not only to obtain physical quantities which cannot be measured or can only be measured at an unreasonable expense but also to reduce the number of physical sensors and thus lower costs. In the field of spark ignited internal combustion engines, the virtual sensing approach may be used to predict the cylinder pressure signal (or characteristic pressure values) based on the acceleration signal of a knock sensor. This paper presents a method for obtaining the cylinder pressure signal in the high-pressure phase of an internal combustion engine based on the measured acceleration signal of a knock sensor. The approach employs a partial differential equation to represent the physical transfer function between the measured signal and the desired pressure. A procedure to fit the modeling constants is described using the example of a large gas engine.
Technical Paper

Impact of 3-way catalytic converters on particulate emission of MPFI motorcycle engines

2022-01-09
2022-32-0004
Due to climatic movements and politics, there is no doubt that a stricter emission legislation will soon face the two-wheeler sector and their manufacturers with new challenges. Additional to the already limited pollutants, a limitation of particulate number will probably also be introduced, which means that there is an urgent need for action in exhaust gas after treatment and particulate reduction systems. For natural aspirated, port injected engines, as used in two-wheeler-technologies, conventional systems already established in passenger cars are not necessarily applicable. Moreover, the emission spectrum is fundamentally different from passenger car engines due to the better homogenization of they typically used MPFI engine types. Adapting conventional particulate filter technologies to the finer particles of MPFI engines would result in a disproportionately larger exhaust backpressure.
Journal Article

Measuring Automotive Exhaust Particles Down to 10 nm

2020-09-15
2020-01-2209
The latest generation of internal combustion engines may emit significant levels of sub-23 nm particles. The main objective of the Horizon 2020 “DownToTen” project was to develop a robust methodology and provide policy recommendations towards the particle number (PN) emissions measurements in the sub-23 nm region. In order to achieve this target, a new portable exhaust particle sampling system (PEPS) was developed, being capable of measuring exhaust particles down to at least 10 nm under real-world conditions. The main design target was to build a system that is compatible with current PMP requirements and is characterized by minimized losses in the sub-23 nm region, high robustness against artefacts and high flexibility in terms of different PN modes investigation, i.e. non-volatile, volatile and secondary particles.
Technical Paper

Technologies to Achieve Future Emission Legislations with Two Stroke Motorcycles

2018-10-30
2018-32-0042
Increasingly stringent emission regulations force manufacturers of two wheelers to develop low emission motorcycle concepts. Especially for small two-stroke engines with symmetrical port timing structure, causing high HC-emissions due to scavenge losses, this is a challenging demand that can only be met with alternative mixture formation strategies and by intensifying the use of modern development tools. Changing from EU4 to EU5, emission legislation will not only have an impact on the improvement of internal combustion but will also drastically change the after-treatment system. Nowadays, small two-stroke engines make use of a simple carburetor for external mixture preparation. The cylinders are scavenged by air/fuel mixtures. Equipped with exhaust gas after-treatment systems, such as secondary air with two or three catalytic converters, the emission limits for EURO 4 homologation can be achieved with carbureted engines.
Technical Paper

Multimethod Concept for Continuous Wear-Analysis of the Piston Group

2018-04-03
2018-01-0839
Friction losses as well as lube oil consumption at the piston group are key factors for future engine downsizing concepts regarding to emissions and consumption. This means an early identification of friction losses and wear is essential within development. The main problem is that the wear assessment is based on long durability tests which are typically performed in a later phase. This may lead to the fact that an early optimized configuration with respect to friction can cause a potential wear problem later in the durability test program. Still ongoing trends in combustion engine engineering lead to both the minimized oil supply in the tribocontact piston bore interface and improved wear resistance. One is forced to the conclusion that understanding and quantifying wear will be a key driver for the future engine development process. The aim is a holistic concept that combines different methods to investigate wear and furthermore its combination with friction loss studies.
Journal Article

Modular Fault Diagnosis System for Engine Test Bed Measurements

2017-03-28
2017-01-0386
To achieve high power output and good efficiency and to comply with increasingly stricter emission standards, modern combustion engines require a more complex engine design, which results in a higher number of control parameters. As the measurement effort and the number of sensors for engine development at the test bed continue to increase, it is becoming nearly impossible for the test bed engineer to manually check measurement data quality. As a result, automated methods for analysis and plausibility checks of measurement data are necessary in order to find faults as soon as they occur and to obtain test results of the highest possible quality. This paper presents a methodology for automated fault diagnosis on engine test beds. The methodology allows reliable detection of measurement faults as well as the identification of the root cause of faults.
Journal Article

Experimental and Simulative Friction Analysis of a Fired Passenger Car Diesel Engine with Focus on the Cranktrain

2016-10-17
2016-01-2348
The CO2 reduction required by legislation represents a major challenge to the OEMs now and in the future. The use of fuel consumption saving potentials of friction-causing engine components can make a significant contribution. Boundary potential aspects of a combustion engine offer a good opportunity for estimating fuel consumption potentials. As a result, the focus of development is placed on components with great saving potentials. Friction investigations using the motored method are still state of the art. The disadvantages using this kind of friction measurement method are incorrect engine operating conditions like cylinder pressure, piston and liner temperatures, piston secondary movement and warm deformations which can lead to incorrect measurement results compared to a fired engine. In the past, two friction measurement methods came up, the so called floating liner method and a motored friction measurement with external charging.
Technical Paper

Thermodynamic Limits of Efficiency Enhancement of Small Displacement Single-Cylinder Engines

2015-11-17
2015-32-0817
Millions of small displacement single-cylinder engines are used for the propulsion of scooters, motorcycles, small boats and others. These SI-engines represent the basis of an affordable mobility in many countries, but at the same time their efficiency is quite low. Today, the limited fossil fuel resources and the anthropogenic climate require a sustainable development of combustion engines, the reduction of fuel consumption being an important factor. A variety of different strategies (turbo-charging, cylinder deactivation, direct injection, etc.) are investigated here to increase the efficiency of multi-cylinder engines. In the case of small displacement single-cylinder engines, other strategies are required because of their special design and the high pressure on costs. In the context of this paper different layout parameters which have an influence on the working process are investigated, with the aim of increasing the efficiency of small displacement single-cylinder engines.
Technical Paper

Layout and Development of a 300 cm3 High Performance 2S-LPDI Engine

2015-11-17
2015-32-0832
In consideration of the fact that in extreme Enduro competitions two-stroke motorcycles are still dominating, the Institute of Internal Combustion Engines and Thermodynamics, Graz University of Technology, with a long tradition in two-stroke technology, has developed a new 300 cm3 two-stroke motorcycle engine. The 2-stroke LPDI (Low Pressure Direct Injection) technology was originally developed for the 50 cm3 Scooter and moped market in Europe. In 50 cm3 applications the LPDI technology fulfils the EURO 4 emission standard (2017) [1]. In a next step the LPDI technology was applied to a 250 cm3 Enduro engine demonstrator vehicle. Based on the results of the demonstrator, a complete new high performance 300 cm3 engine was developed. The development of this new engine will be described in this publication. Some interesting aspects of the layout with 3D-CFD methods and also 1D-CFD simulation to optimize the exhaust system by DoE methods are discussed in the paper.
Journal Article

Evaluation of Valve Train Variability in Diesel Engines

2015-09-06
2015-24-2532
The continuously decreasing emission limits lead to a growing importance of exhaust aftertreatment in Diesel engines. Hence, methods for achieving a rapid catalyst light-off after engine cold start and for maintaining the catalyst temperature during low load operation will become more and more necessary. The present work evaluates several valve timing strategies concerning their ability for doing so. For this purpose, simulations as well as experimental investigations were conducted. A special focus of simulation was on pointing out the relevance of exhaust temperature, mass flow and enthalpy for these thermomanagement tasks. An increase of exhaust temperature is beneficial for both catalyst heat-up and maintaining catalyst temperature. In case of the exhaust mass flow, high values are advantageous only in case of a catalyst heat-up process, while maintaining catalyst temperature is supported by a low mass flow.
Technical Paper

Extended Expansion Engine with Mono-Shaft Cam Mechanism for Higher Efficiency - Layout Study and Numerical Investigations of a Twin Engine

2014-11-11
2014-32-0102
The automotive industry has made great efforts in reducing fuel consumption. The efficiency of modern spark ignition (SI) engines has been increased by improving the combustion process and reducing engine losses such as friction, gas exchange and wall heat losses. Nevertheless, further efficiency improvement is indispensable for the reduction of CO2 emissions and the smart usage of available energy. In the previous years the Atkinson Cycle, realized over the crank train and/or valve train, is attracting considerable interest of several OEMs due to the high theoretical efficiency potential. In this publication a crank train-based Atkinson cycle engine is investigated. The researched engine, a 4-stroke 2 cylinder V-engine, basically consists of a special crank train linkage system and a novel Mono-Shaft valve train concept.
Technical Paper

Strategies for Emission Reduction on Small Capacity Two-Wheelers with Regard to Future Legislative Limits

2014-11-11
2014-32-0031
Looking at upcoming emission legislations for two-wheelers, it is quite obvious that the fulfilment of these targets will become one of the biggest challenges within the engine development process. The gradual harmonization of emission limits for two-wheelers with existing automotive standards will subsequently lead to new approaches regarding mixture preparation and exhaust gas aftertreatment. Referring to these future scenarios, a state-of-the-art in development of catalytic converters for two- or three-wheeler applications should be presented. After choosing a suitable test carrier, which has already been equipped with EFI components including an oxygen sensor for λ=1 operation mode, a basic injection system calibration was used to optimize the combustion process. Based on this setup, a variable exhaust system was manufactured to be able to integrate different catalyst configurations.
Technical Paper

Control of a Low Cost Range Extender for L1e Class PHEV Two-Wheelers

2014-11-11
2014-32-0014
Due to the small number of two wheelers in Europe and their seasonal use, their contribution to the total emissions has been underestimated for a long time. With the implementation of the new emission regulation 168/2013 [3] for type approval coming into force 2016, the two wheeler sector is facing major changes. The need to fulfil more stringent emission limits and the high demand on the durability of after treatment systems result in an engine control system that is getting more complex and therewith more expensive. Especially the low cost two wheelers with small engine capacities will be affected by increasing costs which cannot be covered by the actual competitive product price. Therefore, new vehicle concepts have to be introduced on the market. A vehicle concept of a plug in hybrid electric city scooter with range extender as well as the range extender itself have already been published in SAE Papers 2011-32-0592 [1] and 2012-32-0083 [2].
Technical Paper

Air Cooled 50cm3 Scooter Euro 4 Application of the Two-Stroke LPDI Technology

2014-11-11
2014-32-0008
The Institute for Internal Combustion Engines and Thermodynamics, Graz University of Technology, has presented several applications of its 2-stroke LPDI (low pressure direct injection) technology in the previous years ([1], [2], [3]). In order to improve the competitiveness of the 2-stroke LPDI technology, an air cooled 50cm3 scooter application has been developed. All previous applications have been liquid cooled. This air cooled application demonstrates the EURO 4 (2017) ability of the technology and shows that the 2S-LPDI technology can also be applied to low cost air-cooled engines. Hence, the complete scooter and moped fleet can be equipped with this technology in order to fulfil both the emission standards and the COP (conformity of production) requirements of Euro 4 emission stage. The paper presents the Euro 4 Scooter results and describes the efficient conversion process of the existing carburetor engine to the LPDI version.
X