Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Simulation Study on the Influence of Multi-Magnetic Particles on Oil Sensor Signals

2024-04-09
2024-01-2826
Engine operation produces particles that contaminate the lubricating oil and can damage the engine's internal components. This paper presents a model for a three-coil inductive metal particle sensor and verifies the rationality and accuracy of the model by simulating the motion of a single spherical iron particle passing through the sensor. On this basis, the simulation of coupling double particles with different sizes, distances, and shapes is carried out. The study explores the influence of particle motion on the sensor-induced signal under various conditions. The research shows that when two particles pass through the sensor, the induced voltage signal will produce superposition when the distance between the two particles is small. The peak value of the induced voltage is 1-2 times the peak value of the induced voltage of a single particle. As the distance increases, the peak value of the induced voltage initially decreases, then slowly increases, and finally stabilizes.
Technical Paper

Comparison of Spray Collapses from Multi-Hole and Single-Hole Injectors Using High-Speed Photography

2020-04-14
2020-01-0321
In this paper, the differences between multi-hole and single-hole spray contour under the same conditions were compared by using high-speed photography. The difference between the contour area of multi-hole and that of single-hole spray was used as a parameter to describe the degree of spray collapse. Three dimensionless parameters (i.e. degree of superheat, degree of undercooling, and nozzle pressure ratio) were applied to characterize inside-nozzle thermodynamic, outside-nozzle thermodynamic and kinetic factors, respectively. In addition, the relationship between the three dimensionless parameters and the spray collapse was analyzed. A semi-empirical equation was proposed for evaluation of the degree of collapse based on dimensionless parameters of flash and non-flash boiling sprays respectively.
Technical Paper

Characterizing Propane Flash Boiling Spray from Multi-Hole GDI Injector

2018-04-03
2018-01-0278
In this research, propane flash boiling sprays discharged from a five-hole gasoline direct injector were studied in a constant volume vessel. The fuel temperature (Tfuel) ranged from 30 °C to 90 °C, and the ambient pressure (Pamb) varied from 0.05 bar to 11.0 bar. Different flash boiling spray behavior compared to that under sub-atmospheric conditions was found at high Pamb. Specifically, at the sub-atmospheric pressures, the individual flashing jets merged into one single jet due to the strong spray collapse. In contrast, at Pamb above 3.0 bar and Tfuel above 50 °C, the spray collapse was mitigated and the flashing jets were separated from each other. Further analyses revealed that the mitigation of spray collapse at high Pamb was ascribed to the suppression of jet expansion. In addition, it was found that the spray structure was much different at similar Rp, indicating that Rp lacked the generality in describing the structure of flash boiling sprays.
X