Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Thoraco-Abdominal Response and Injury

1980-09-01
801305
This study Investigates the response of human cadavers1, and live anesthetized and post-mortem primates and canines2, to blunt lateral thoraco-abdominal impact. There were 12 primates: 5 post-mortem and 7 live anesthetized; 10 canines; 1 post-mortem and 9 live anesthetized; and 3 human cadavers. A 10 kg free-flying mass was used to administer the impact in the right to left direction. To produce the varying degrees of injury, factors including velocity, padding of the impactor surface, location of impact site, and impactor excursion were adjusted. The injuries were evaluated by gross autopsy, and in the case of live subjects, current clinical methods such as sequential peritoneal lavage and biochemical assays were also employed. Mechanical measurements included force time history, intraortic pressure, and high-speed cineradiography to define gross organ motion.
Technical Paper

Impact Injury Mechanisms in Abdominal Organs

1973-02-01
730968
Blunt abdominal trauma is a major cause of death in the United States. However, little experimental work has been done to clarify the mechanism of blunt abdominal injury and to quantify tolerance parameters for the abdominal organs. This paper describes a joint study by the Highway Safety Research Institute and the Section of General Surgery of The University of Michigan in which direct impacts were applied to livers and kidneys. The tests were performed in a high-speed testing machine at a controlled ram velocity and stroke limit. The organ was surgically mobilized in anesthesized Rhesus monkeys and then placed on a load cell while still being perfused in the living animal. Tests were performed at ram speeds of 120, 6000, and 12000 in/min (5, 250,and 500 cm/s). The resulting load-deflection data were normalized and average stress-strain curves plotted for each test. In addition, the resulting injury severity was estimated immediately after impact using an injury scale of 1 to 5.
Technical Paper

Response of Human Larynx to Blunt Loading

1973-02-01
730967
Direct impact to the larynx is usually prevented in accidents by the protective nature of the chin. In some situations, the occupant motions leave the larynx unprotected and susceptible to impact by the steering wheel rim or instrument panel. As one of the unpaired vital organs of the body, there is no easy way to provide an alternative for its functions when the larynx is lost or damaged. Information available on the tolerance of the unembalmed human larynx to force is quite limited. This paper describes a multidisciplinary study to determine the response of unembalmed human larynges to blunt mechanical loading and to interpret the response with respect to clinical data. Fresh intact larynges were obtained at autopsy and tested at either static or dynamic loading conditions utilizing special test fixtures in materials-testing machines. Load and deformation data were obtained up to levels sufficient to produce significant fractures in both the thyroid and cricoid cartilages.
Technical Paper

Occupant Protection in Rear-End Collisions

1972-02-01
720033
This paper discusses the problem of occupant protection in severe rear-end collisions from the standpoint of high performance seat structures and head restraints. Consideration is given to both fixed head restraints and to deployable head restraints. Two-dimensional computer simulations of occupant kinematics in a variety of rear-end collisions are utilized to provide initial performance criteria for head restraint design configurations. The resulting prototype system underwent a test and development program on an impact sled. The results of the various prototype performances and general criteria for high performance head restraint systems are discussed.
Technical Paper

Deployable Head Restraints - A Feasibility Study

1971-02-01
710853
Present head restraint systems quite often restrict rearward visibility, and when not properly adjusted, their effectiveness suffers. The deployable head restraint can overcome both these problems and in addition provide head restraint performance better than fixed systems. This paper describes a project to study the feasibility of deployable head restraints. Starting with two-dimensional computer simulations of front seat occupant kinematics in rear-end collisions, initial performance criteria for deployment times, and restraint configurations were determined for various impact velocities. Based on these criteria, two types of deployable systems were designed and constructed, one an inflatable system and the other a rigid sliding system. These prototype systems then underwent a test and development program using anthropomorphic dummies and an impact sled. The test program evaluated the effectiveness of the head restraint systems under high- and low-speed crash simulations.
Technical Paper

Development of a Mechanical Model of the Human Head - Determination of Tissue Properties and Synthetic Substitute Materials

1970-02-01
700903
A variety of mechanical head forms is used today in the evaluation of the crashworthiness of automotive interiors and the effectiveness of helmet designs. Most head forms are of a very rigid metallic construction, although frangible head forms that indicate skull fracture are presently available. None of the existing head forms can be considered a complete mechanical analog to the human head in terms of mechanical response. This paper describes the initial phases of the development of such a head form. The first step in the development of the model was the determination of the pertinent mechanical properties of the tissues of the human head (scalp, skull bone, dura mater, and brain). A testing program which determined these properties at both static and dynamic strain rates is described and the results are summarized. The second phase of the program was to find and develop synthetic materials which duplicated the mechanical properties of the human tissues.
X