Refine Your Search

Topic

Author

Search Results

Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
Technical Paper

Numerical Study of Internal Combustion Engine using OpenFOAM®

2016-04-05
2016-01-1346
We developed the numerical simulation tool by using OpenFOAM® and in-house simulation codes for Gasoline Direct Injection (GDI) engine in order to carry out the precise investigation of the throughout process from the internal nozzle flow to the fuel/air mixture in engines. For the piston/valve motions, a mapping approach is employed and implemented in this study. In the meantime, the spray atomization including the liquid-columnbreakup region and the secondary-breakup region are simulated by combining the different numerical approaches applied to each region. By connecting the result of liquid-column-breakup simulation to the secondary-breakup simulation, the regions which have different physical phenomena with different length scales are seamlessly jointed; i.e., the velocity and position of droplets predicted by the liquid-column-breakup simulation is used in the secondary breakup simulation so that the initial velocity and position of droplets are transferred.
Technical Paper

Development of Breath-Alcohol-Detection System

2016-04-05
2016-01-1498
The problem of high fatal accident rates due to drunk driving persists, and must be reduced. This paper reports on a prototype system mounted on a car mock-up and a prototype portable system that enables the checking of the drivers’ sobriety using a breath-alcohol sensor. The sensor unit consists of a water-vapor-sensor and three semiconductor gas sensors for ethanol, acetaldehyde, and hydrogen. One of the systems’ features is that they can detect water vapor from human-exhaled breath to prevent false detection with fake gases. Each gas concentration was calculated by applying an algorithm based on a differential evolution method. To quickly detect the water vapor in exhaled breath, we applied an AC voltage between the two electrodes of the breath-water-vapor sensor and used our alcohol-detection algorithm. The ethanol level was automatically calculated from the three gas sensors as soon as the water vapor was detected.
Technical Paper

A Virtual ECU and Its Application to Control System Analysis - Power Window System Demonstration

2016-04-05
2016-01-0022
A virtual power window control system was built in order to look into and demonstrate applications of microcontroller models. A virtual ECU simulated microcontroller hardware operations. The microcontroller program, which was written in binary digital codes, was executed step-by-step as the virtual ECU simulation went on. Thus, production-ready codes of ECUs are of primary interest in this research. The mechanical system of the power window, the DC motor to lift the window glass, the H-bridge MOSFET drivers, and the current sensing circuit to detect window locking are also modeled. This means that the hardware system of the control system was precisely modeled in terms of mechanical and circuit components. By integrating these models into continuous and discrete co-simulation, the power window control system was analyzed in detail from the microscopic command execution of the microcontroller to the macroscopic motion of the window mechanism altogether.
Technical Paper

Investigation of a Detecting Technology of Combustion Conditions Using the Ion-Current Sensor

2015-09-01
2015-01-1983
In previous study, a method of combustion detection for homogeneous charge compression ignition (HCCI) using a crank angle sensor and a knock sensor has been estimated [1]. In addition, an ion-current sensor has been used as a countermeasure against abnormal combustion with downsizing and higher compression ratio engines. An ion-current sensor has been newly adopted in engine systems. In this study, detection performance of combustion conditions in HCCI and spark ignition (SI) using with the ion-current sensor was estimated. The purpose of this study was to confirm detectable combustion conditions using with the ion-current sensor, and to confirm a requirement of applied voltage for the ion-current sensor. A detection signal of the ion-current sensor was changed by combustion style (HCCI,SI). Experimental results showed a heat release rate increased with ion signals increasing approximately at the same time in HCCI and SI.
Technical Paper

Method for Determining Thermal Resistances in Coupled Simulator: For Electric Valve Timing Control System

2015-04-14
2015-01-1301
We developed a thermal calculation 1D simulator for an electric valve timing control system (VTC). A VTC can optimize the open and close timing of the intake and exhaust valves depending on the driving situation. Since a conventional VTC is driven hydraulically, the challenges are response speed and operation limit at low temperature. Our company has been developing an electric VTC for quick response and expansion of operating conditions. Currently, it is necessary to optimize the motor and reduction gear design to balance quicker response with downsizing. Therefore, a coupled simulator that can calculate electricity, mechanics, control, and thermo characteristics is required. In 1D simulation, a thermal network method is commonly used for thermal calculation. However, an electric VTC is attached to the end of a camshaft; therefore, determining thermal resistances is difficult. We propose a method of determining thermal resistances, using both theoretical and experimental approaches.
Technical Paper

Individual Cylinder Control for Air-Fuel Ratio Cylinder Imbalance

2015-04-14
2015-01-1624
Recently emissions regulations are being strengthened. An air-fuel ratio cylinder imbalance causes emissions to increase due to universal exhaust gas oxygen (UEGO) sensor error or exhaust gas oxygen (EGO) sensor error. Various methods of reducing an air-fuel ratio cylinder imbalance have been developed. It is preferable for a control system to operate over a wide range of conditions. Our target is to expand the operating conditions from idling to high load conditions. Our approach is to use both an UEGO sensor and a crank angle sensor. A two-revolution frequency component calculated from the UEGO sensor output signal and angular acceleration calculated from the crank angle sensor output signal are used to identify the cylinder where the air-fuel ratio error occurs.
Technical Paper

Diagnostic Coverage Evaluation Method for Analog Circuits to Comply with Functional Safety Standards

2015-04-14
2015-01-0267
The ISO 26262 is a functional safety standard for road vehicles. The standard requires manufacturers to conduct quantitative assessment of the diagnostic coverage (DC) of products. The DC is defined as the percentage of failure probability covered by safety mechanisms. However, DC evaluation methods for drift faults, in which the change in element values is not constant, have not been discussed. In this paper, we propose a DC evaluation method for analog circuits with drift faults. With this method, we first parameterize the effect of drift faults onto a bounded region then split the region into safe fault, hazardous detectable fault, and hazardous undetectable fault regions. We evaluate the classification rate distribution by the area ratios of these regions.
Journal Article

Injection Quantity Range Enhancement by Using Current Waveform Control Technique for DI Gasoline Injector

2014-04-01
2014-01-1211
We have achieved injection quantity range enhancement by using the current waveform control technique for direct injection (DI) gasoline injectors. In this study, we developed an injection quantity simulator to find out the mechanism of non-linear characteristics. We clarified the non-linear production mechanism by using the simulator. This simulator is a one-dimensional simulator that incorporates calculation results from both unsteady electromagnetic field analysis and hydraulic flow analysis into the motion equation of this simulation code. We investigated the relation between armature and the injection quantity by using the simulator. As a result, we clarified that the non-linearity was produced by the bounce of the armature in the opening action. Thus, we found that it is effective to reduce the armature bounce to improve the linearity of the injection quantity characteristics.
Technical Paper

Multi-Swirl Type Injector for Port Fuel Injection Gasoline Engines

2014-04-01
2014-01-1436
The authors developed a multi-swirl type injector characterized by a short spray penetration length and fine atomization to improve exhaust emissions and fuel consumption for port fuel injection (PFI) gasoline engines. In PFI gasoline engines, fuel adhesion to an intake manifold causes exhaust emission. In addition, good mixing of fuel and air causes high combustion efficiency, and as a result the fuel consumption improves. Injectors therefore require two improvements: first, a short spray penetration to avoid fuel adhesion to the intake manifold, and second, a fine atomization spray to generate a good mixture formation of fuel and air. In this study, the authors developed a multi-swirl type injector equipped with multiple orifice holes featuring swirl chambers upstream of each orifice. The key feature of the proposed injector is “involute curve-formed swirl chambers” for generating a uniform thin liquid-film in the orifices.
Technical Paper

Investigation of Robustness Control for Practical Use of Gasoline HCCI Engine- An Investigation of a Detecting Technology of Conditions of HCCI Using an Ion Current Sensor -

2014-04-01
2014-01-1279
The robustness control for homogeneous charge compression ignition (HCCI) using a crank angle sensor and a knock sensor has been estimated. On the other hand, an ion current sensor is used as a countermeasure against abnormal combustion with downsized and higher compression ratio engines. This sensor can generally be adopted in engine systems. Therefore, we examined the application of an ion current sensor to robustness control for HCCI. The purpose of this research was to develop a method of detecting combustion conditions to make HCCI engines more robust. Therefore, we evaluated the performance of the ion current sensor. Experimental results comparing ion intensity detection in HCCI. The detection value of the ion current sensor changed based on the form of combustion. Experimental results showed that the heat release rate increased with an increase in ion signals appear during the same time at approximately in both spark ignition (SI) and HCCI.
Technical Paper

Improved Thermal Efficiency Using Hydrous Ethanol Reforming in SI Engines

2013-09-08
2013-24-0118
The internal combustion engines waste large amounts of heat energy, which account for 60% of the fuel energy. If this heat energy could be converted to the output power of engines, their thermal efficiency could be improved. The thermal efficiency of the Otto cycle increases as the compression ratio and the ratio of specific heat increase. If high octane number fuel is used in engines, their thermal efficiency could be improved. Moreover, thermal efficiency could be improved further if fuel could be combusted in dilute condition. Therefore, exhaust heat recovery, high compression combustion, and lean combustion are important methods of improving the thermal efficiency of SI engines. These three methods could be combined by using hydrous ethanol as fuel. Exhaust heat can be recovered by the steam reforming of hydrous ethanol. The reformed gas including hydrogen can be combusted in dilute condition. In addition, it is cooled by directly injecting hydrous ethanol into the engine.
Technical Paper

A New Diagnosis Method for an Air-Fuel Ratio Cylinder Imbalance

2012-04-16
2012-01-0718
A new diagnosis method for an air-fuel ratio cylinder imbalance has been developed. The developed diagnosis method is composed of two parts. The first part detects an occurrence of an air-fuel ratio cylinder imbalance by using a two revolution frequency component of an EGO sensor output signal or an UEGO sensor output signal upstream from a catalyst. The two revolution frequency component is from a cycle where an engine rotates twice. The second part of the diagnosis method detects an increase of emissions by using a low frequency component which is calculated from the output of an EGO sensor downstream from the catalyst. When the two revolution frequency component calculated using the upstream sensor output is larger than a certain level and the low frequency component calculated using the downstream sensor output is shifted to a leaner range, the diagnosis judges that the emissions increase is due to an air-fuel ratio cylinder imbalance.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

2010-04-12
2010-01-0584
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Technical Paper

Outline of Material Circulation — Closed Habitation Experiments Conducted in 2005 – 2007 Using Closed Ecology Experiment Facilities

2009-07-12
2009-01-2580
The Closed Ecology Experiment Facilities (CEEF) were installed to collect data for estimation of transfer of radionuclides from atmosphere to humans in the ecosystem. The first target among the radio-nuclides is 14C. In order to validate function of material circulation in an experimental system constructed in the CEEF, circulation of air constituents, water and materials in waste was demonstrated connecting the Closed Plant Experiment Facility (CPEF) and the Closed Animal and Human habitation Experiment Facility (CAHEF) of the CEEF, since 2005 to 2007. The CPEF has a Plant Cultivation Module (PCM), which comprises of three plant chambers illuminated solely by artificial lighting, one plant chamber illuminated by both natural and artificial lighting, a space for preparation, and an airlock, and a physical/chemical material circulation system.
Technical Paper

An Air-Fuel Ratio and Ignition Timing Retard Control Using a Crank Angle Sensor for Reducing Cold Start HC

2009-04-20
2009-01-0588
Emission regulations continue to be strengthened, and it is important to decrease cold start hydrocarbon concentrations in order to meet them, now and in the future. The HC concentration in engine exhaust gas is reduced by controlling the air-fuel ratio to the low HC range and retarding the ignition timing as much as possible until the engine stability reaches a certain deterioration level. Conventionally however, the target air-fuel ratio has been set at a richer range than the low HC range and the target ignition timing has been more advanced than the engine stability limit, in order to stabilize the engine for various disturbances. As a result, the HC concentration has not been minimized. To solve this problem, a new engine control has been developed. This control uses a crank angle sensor to simultaneously control the air-fuel ratio and the ignition timing so that the HC concentration can be minimized.
Technical Paper

Research and Development of Operation Technology on the Waste Processing System of the Closed Ecology Experiment Facilities for Circulation of Carbon in an Experimental Closed Ecosystem Comprised of Humans, Goats and Crops

2008-06-29
2008-01-1979
Before a series of overall material circulation in an experimental system including crops, animals and humans, technical examinations for the development of a waste processing system were conducted for incorporating the system to the Closed Ecology Experiment Facilities (CEEF). The examinations are intended to validate the function of the carbonization and incineration processing units which were installed in the CEEF in 2006. Using different mock-up samples, examinations have been carried out to verify the function and capability of the whole system, including the waste carbonization processing unit, incineration processing unit, exhaust gas tank and the exhaust gas processing unit. In an examination using filter paper pulp as a mock-up sample, processing time in each unit was checked. The processing times needed for carbonization and incineration processing were 5.7 and 2.6 hours, respectively.
Journal Article

Development of a New Metal Substrate for Lean NOx Trap

2008-04-14
2008-01-0806
This paper presents a new substrate for Lean NOx Traps (LNT) which enables high NOx conversion efficiency, even after long-term aging, when using alkali metals as the NOx adsorber. When a conventional metal honeycomb is used as the LNT substrate, the chromium in the metal substrate migrates into the washcoat and reacts with the alkali metals after thermal aging. In order to help prevent this migration, we have developed a new substrate where a fine -alumina barrier is precipitated to the surface of the metal substrate. The new substrate is highly capable of preventing migration of chromium into the washcoat and greatly enhances the NOx conversion. The durability of the new substrate and emission test using a test vehicle are also examined.
Technical Paper

Cold Start HC Reduction with Feedback Control Using a Crank Angle Sensor

2008-04-14
2008-01-1010
Emission regulations continue to be strengthened, and it is important to decrease cold start hydrocarbon concentrations in order to meet them, now and in the future. The HC concentration in engine exhaust gas can be reduced by optimizing the air-fuel ratio. However, a conventional air-fuel ratio feedback control does not operate for the first ten seconds after the engine has started because the air-fuel ratio sensor has not yet been activated. In this paper, we report on a study to optimize the air-fuel ratio using a crank angle sensor until the air-fuel ratio sensor has been activated. A difference in fuel properties was used as a typical disturbance factor. The control was applied to both a direct-injection engine (DI) and a port-injection engine (MPI). It was evaluated for two fuel types: one which evaporates easily and one which does not. The experimental results show the air-fuel ratio is optimized for both types of fuel.
Technical Paper

Circulation of Water in Addition to CO2, O2 and Plant Biomass in an Artificial Ecosystem Comprised of Humans, Goats and Crops During Three 2-Weeks Closed Habitation Experiments Using CEEF

2007-07-09
2007-01-3091
The Closed Ecology Experiment Facilities (CEEF) were installed to collect data for realistic estimation of radiocarbon transfer in the ecosystem. Two-week experiments were conducted three times from September to November of 2006, in which two human subjects called as eco-nauts were enclosed and worked in an airtight facility, the CEEF. The eco-nauts were changed after a week from beginning of each experiment. In these experiments, a Plant Module (PM) with 23 crops, including rice, soybean, peanut, and sugar beet, was connected to an Animal & Habitation Module (AHM) which included the eco-nauts and two goats. 91.8-94.6% (by weight) of the food consumed by the eco-nauts and 79% of the feed to the goats (straw, leaf and bran of rice, leaf and stem of soybean, and leaf, stem and shell of peanut) were produced from crops in the PM. Amount of oxygen produced by the crops was more than the amount consumed by respiration of human and animals in these experiments.
X