Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

New 1.0L I3 Turbocharged Gasoline Direct Injection Engine

2017-03-28
2017-01-1029
To comply with the environmental demands for CO2 reduction without compromising driving performance, a new 1.0 liter I3 turbocharged gasoline direct injection engine has been developed. This engine is the smallest product in the new Honda VTEC TURBO engine series (1), and it is intended to be used in small to medium-sized passenger car category vehicles, enhancing both fuel economy through downsizing, state-of-the-art friction reduction technologies such as electrically controlled variable displacement oil pump and timing belt in oil system, and also driving performance through turbocharging with an electrically controlled waste gate. This developed engine has many features in common with other VTEC TURBO engines such as the 1.5 liter I4 turbocharged engine (2) (3), which has been introduced already into the market.
Technical Paper

Development of Electric Powertrain for New Model Hybrid Sports Utility Vehicle

2017-03-28
2017-01-1158
An electric powertrain has been developed for Honda’s 2017 model hybrid SUV. The electric powertrain developed for the hybrid model consists of a Twin Motor Unit (TMU), a high-output front motor mated to a 7-speed DCT for efficient power generation, a Power Control Unit (PCU), and an Intelligent Power Unit (IPU). The TMU is made up of two motor units able to drive the left and right wheels independently, as employed in Honda’s flagship sedan and high-end sports cars. The PCU delivers electric power to the motors, and the IPU stores drive torque and regenerative energy. The high-output front motor and TMU are equipped with sports hybrid SH-AWD components, as used in existing mass-production models, in order to realize handling performance equaling that of the base SUV. Positioned under the floor outside the passenger cabin, the PCU has a newly developed 3-in-1 inverter, motor control ECU, and 12V DC-DC converter built-in, and is housed in a fully waterproof structure.
Technical Paper

Deployment of Vehicle-to-Grid Technology and Related Issues

2015-04-14
2015-01-0306
In order to reduce emissions and enhance energy security, renewable power sources are being introduced proactively. As the fraction of these sources on a power grid grows, it will become more difficult to maintain balance between renewable power supply and coincident demand, because renewable power generation changes frequently and significantly, depending on weather conditions. As a means of resolving this imbalance between supply and demand, vehicle-to-grid (V2G) technology is being discussed, because it enables vehicles to contribute to stabilizing the power grid by utilizing on-board batteries as a distributed energy resource as well as an energy storage for propulsion. The authors have built a plug-in vehicle with a capability of backfeeding to the power grid, by integrating a bi-directional on-board AC/DC and DC/AC converter (on-board charger) and a digital communication device into the vehicle. The vehicle is interconnected to a power regulation market in the United States.
Journal Article

Application of Electric Servo Brake System to Plug-In Hybrid Vehicle

2013-04-08
2013-01-0697
An electric servo brake system applied for use on electric vehicles was applied for use on plug-in hybrid vehicles in order to achieve fuel-savings together with good brake feel and enhanced operability for plug-in hybrid vehicles. The electric servo brake system is made up of highly accurate braking pressure control that functions cooperatively with regenerative brakes together with a structure in which pedal force is not influenced by braking pressure control. The configuration of these components enabled good braking feel even when the power train was being switched from one drive mode to another. Automated pressurization functions that are intended for plug-in hybrid vehicles and that operate with electric servo brake systems were also developed. These developed functions include stall cooperative control that functions cooperatively with the power train, regenerative coordinate adaptive cruise control, and hill-start assist.
Technical Paper

Technologies for Practical Application of a TBW System for Large Motorcycle with Improved Driving Feel, Sound Quality, and Layout Flexibility

2010-04-12
2010-01-1094
Honda R&D has developed a throttle-by-wire (TBW) system that meets the needs of motorcycles where the attitude of the vehicle body is controlled by operation of the throttle. To gain high response and following for the throttle valve, we employed a new adaptive control algorithm. The newly developed system has an idling combustion stabilization function and a three-dimensional control function for the throttle-opening map based on running gear and engine speed. With those functions, we improved the controllability of the motorcycle, especially for small throttle openings. Furthermore, we improved the feeling of the limiter control used in maximum-speed limitation. For the overall system, intake system related devices are consolidated to improve the layout flexibility and expand the mounting options on the motorcycle.
Technical Paper

Advanced Hydro-Mechanical Transmission with High-Durability for Small Utility Vehicles

2001-03-05
2001-01-0876
The new automatic transmission, A-HMT (Advanced Hydro-Mechanical Transmission) has been developed for the Honda ATV (All Terrain Vehicle), which is for wide applications such as utility, recreation, etc. The A-HMT system features high performance, durability and reliability attained by improving the structures from the original hydro-mechanical automatic transmission used for the scooter called “Juno”, which Honda had produced many years ago, working on the same principle. In addition to it, by applying the electronic control system, the highly responsive driveability that suits the requirements of ATV's has been realized. The A-HMT is installed in the new 500 cm3 ATV, FOURTRAX FOREMAN RUBICON, which has been introduced in the USA market since June 2000.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Secondary O2 Feedback Using Prediction and Identification Type Sliding Mode Control

2000-03-06
2000-01-0936
Recently, much research has been carried out on secondary O2 feedback which performs control based on the output from a secondary O2 sensor (HEGO sensor). In this research it has been found that, regardless of catalyst aging conditions, the HEGO sensor output indicates 0.6 V when the catalyst reduction rate is maintained at the optimum level. Therefore, based on this relationship, we designed an accurate secondary O2 feedback with the aim of reducing emissions by stabilizing the HEGO sensor output to 0.6 V. In order to realize this control, it was necessary to solve the three problems of nonlinear catalyst characteristics, dead time characteristics, and changes in dynamic characteristics due to catalyst aging conditions. Therefore, these problems were solved using the modeling approach of robust control and a new robust adaptive control named Prediction and Identification Type Sliding Mode Control.
Technical Paper

A Quick Warm-Up System During Engine Start-Up Period Using Adaptive Control of Intake Air and Ignition Timing

2000-03-06
2000-01-0551
Early activation of catalyst by quickly raising the temperature of the catalyst is effective in reducing exhaust gas during cold starts. One such technique of early activation of the catalyst by raising the exhaust temperature through substantial retardation of the ignition timing is well known. The present research focuses on the realization of quick warm-up of the catalyst by using a method in which the engine is fed with a large volume of air by feedforward control and the engine speed is controlled by retarding the ignition timing. In addition, an intake air flow control method that comprises a flow rate correction using an adaptive sliding mode controller and learning of flow rate correction coefficient has been devised to prevent control degradation because of variation in the flow rate or aging of the air device. The paper describes the methods and techniques involed in the implementation of a quick warm-up system with improved adaptability.
Technical Paper

Development of the Directly Actuated Variable Valve Control System

1999-09-28
1999-01-3319
New valve control system (HYPER VTEC:Variable Valve Timing and Lift Electronic Control System) having valve inactive mechanism which engine power is made to be united to the environment conservation was developed for motorcycle engines of sport type having higher engine speed. Mass increase in the valve operating system of this system is kept to a minimum with a compact, simple mechanism. The system enables high engine speed up to 13,500 rpm without abnormal motion of valves, having high reliability and durability. In addition, the valve control system has the enhancement of fuel economy and the effect of decreasing the intake and exhaust system sound during 2-valve operation. The switching mechanism part of the operating valve number was manufactured by cold forging, and has decreased costs. This system has been adopted to the sport type motorcycle CB400SF for domestic model in 1999.
Technical Paper

Development of the Variable Valve Timing and Lift (VTEC) Engine for the Honda NSX

1991-01-01
910008
The Honda variable valve timing and lift electronic control system (VTEC) is incorporated in the engine of the NSX sports car that is scheduled for sales in Europe this year. In the process of advancement of Honda's engine technology, VTEC was developed for much higher output and higher efficiency. This is actually the first system in the world that can simultaneously switch the timing and lift of the intake and exhaust valves. This system has made improvements in maximum output at high rpm, and also improved the low rpm range, such as idling stability and starting capability.
Technical Paper

Development of Electric Power Steering

1991-01-01
910014
A new electric power steering (EPS) was developed which uses an electric motor to provide assistance. It is a system combinning the latest in power electronics and high power motor technologies. The development was aimed at enhancing the existing hydraulic power steering's energy efficiency, driver comfort as well as increasing active stability. This paper describies the overall concept of EPS and outlines the components and control strategies using electronics. The EPS was tested on a front wheel drive vehicle weighing 1000kg in front axle load. The results showed a 5.5% improvement in fuel economy. The EPS has also achieved returnability that gives the driver more moderate feelings matching the vehicle in action as well as the active stability control strategy for high speed driving.
X