Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Technical Paper

Study of Self-induced Vibration in an Operating Metal Pushing V-belt CVT

2012-04-16
2012-01-0309
The mechanism of vibration in a metal pushing V-belt was analyzed using a simulation of the dynamic behavior of the belt in order to identify measures in response to unexpected noise occurring during CVT development. The results showed that the unexpected noise originated in self-induced vibration occurring when the elements of the belt moved in the radial direction close to the exit of the drive pulley. This paper will also discuss the realization of a method of reducing the unexpected noise.
X