Refine Your Search

Topic

Author

Search Results

Journal Article

Anisotropic Material Damage Model of Randomly Oriented Thermoplastic Composites for Crash Simulation

2020-04-14
2020-01-1305
In this research, a material model was developed that has orthotropic properties with respect to in-plane damage to support finite element strength analysis of components manufactured from a randomly oriented long-fiber thermoplastic composite. This is a composite material with randomly oriented bundles of carbon fibers that are approximately one inch in length. A macroscopic characteristic of the material is isotropic in in-plane terms, but there are differences in the tension and compression damage properties. In consideration of these characteristics, a material model was developed in which the damage evolution rate is correlated with thermodynamic force and stress triaxiality. In-plane damage was assumed to be isotropic with respect to the elements. In order to validate this material model, the results from simulation and three-point bending tests of closed-hat-section beams were compared and found to present a close correlation.
Journal Article

Development of Motor with Heavy Rare Earth-Free Magnet for Two-Motor Hybrid System

2019-04-02
2019-01-0600
Conventional HEV motors use neodymium magnets with added heavy rare earths, to realize high output and size reduction. However, deposits of heavy rare earths such as Dysprosium (Dy) and Terbium (Tb) are unevenly distributed, so it is important to reduce the amount used, because of supply issue and material cost. In this paper, the application of a heavy rare earth-free magnet is considered on the new motor for a two-motor hybrid system. Compared to conventional neodymium magnets, heavy rare earth free magnets tend to have low coercivity. Also, heavy rare earth-free magnet have low thermal durability, so it is not easy to apply them to motors for a two-motor hybrid system, which requires high output and small size. The motor requires twice as much torque and six times output than one-motor hybrid system. Increase demagnetization resistance and magnet cooling performance is studied by development of the new motor.
Technical Paper

Study of High Power Dynamic Charging System

2017-03-28
2017-01-1245
The use of electric vehicles (EV) is becoming more widespread as a response to global warming. The major issues associated with EV are the annoyance represented by charging the vehicles and their limited cruising range. In an attempt to remove the restrictions on the cruising range of EV, the research discussed in this paper developed a dynamic charging EV and low-cost infrastructure that would make it possible for the vehicles to charge by receiving power directly from infrastructure while in motion. Based on considerations of the effect of electromagnetic waves, charging power, and the amount of power able to be supplied by the system, this development focused on a contact-type charging system. The use of a wireless charging system would produce concerns over danger due to the infiltration of foreign matter into the primary and secondary coils and the health effects of leakage flux.
Technical Paper

The Development of Brake Feel with Variable Servo Ratio Control

2015-09-27
2015-01-2696
We had developed Electric Servo Brake System, which can control brake pressure accurately with a DC motor according to brake pedal force. Therefore, the system attains quality brake feeling while reflecting intentions of a driver. By the way, “Build-up” is characteristics that brake effectiveness increases in accordance with the deceleration of the vehicle, which is recognized as brake feeling with a sense of relief as not to elongate an expected braking distance at a downhill road due to large-capacity brake pad such as sports car and large vehicles. Then, we have applied the optical characteristic control to every car with Electric Servo Brake System by means of brake pressure control but not brake pad. Hereby, we confirmed that the control gives a driver the sense of relief and the reduction of pedal load on the further stepping-on of the pedal. In this paper, we describe the development of brake feel based on the control overview.
Journal Article

Vibration Reduction in Motors for the SPORT HYBRID SH-AWD

2015-04-14
2015-01-1206
A new motor has been developed that combines the goals of greater compactness, increased power and a quiet drive. This motor is an interior permanent magnet synchronous motor (IPM motor) that combines an interior permanent magnet rotor and a stator with concentrated windings. In addition, development of the motor focused on the slot combination, the shape of the magnetic circuits and the control method all designed to reduce motor noise and vibration. An 8-pole rotor, 12-slot stator combination was employed, and a gradually enlarged air gap configuration was used in the magnetic circuits. The gradually enlarged air gap brings the centers of the rotor and the stator out of alignment, changing the curvature, and continually changing the amount of air gap as the rotor rotates. The use of the gradually enlarged air gap brings torque degradation to a minimum, and significantly reduces torque fluctuation and iron loss of rotor and stator.
Journal Article

Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388
We have developed a bench test method to assess driver distraction caused by the load of using infotainment systems. In a previous study, we found that this method can be used to assess the task loads of both visual-manual tasks and auditory-vocal tasks. The task loads are assessed using the performances of both pedal tracking task (PT) and detection response task (DRT) while performing secondary tasks. We can perform this method using simple equipment such as game pedals and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted in three test environments in which test regions, experimenters and participants differed from each other in the US, and the test procedures were almost the same. We set two types of visual-manual tasks and two types of auditory-vocal tasks as secondary tasks and set two difficulties for each task type to vary the level of task load.
Technical Paper

Influence of Introduction of Oblique Moving Deformable Barrier Test on Collision Compatibility

2015-04-14
2015-01-1492
The National Highway Traffic Safety Administration (NHTSA) has developed moving deformable barriers for vehicle crash test procedures to assess vehicle and occupant response in partial overlap vehicle crashes. For this paper, based on the NHTSA Oblique Test procedure, a mid-size sedan was tested. The intent of this research was to provide insight into possible design changes to enhance the oblique collision performance of vehicles. The test results predicted high injury risk for BrIC, chest deflection, and the lower extremities. In this particular study, reducing lower extremity injuries has been focused on. Traditionally, lower extremity injuries have been reduced by limiting the intrusion of the lower region of the cabin's toe-board. In this study, it is assumed that increasing the energy absorbed within the engine compartment is more efficient than reinforcing the passenger compartment as a method to reduce lower extremity injuries.
Journal Article

Study of Effects of Residual Stress on Natural Frequency of Motorcycle Brake Discs

2014-11-11
2014-32-0053
In brake squeal analyses using FE models, minimizing the discrepancies in vibration characteristics between the measurement and the simulation is a key issue for improving its reproducibility. The discrepancies are generally adjusted by the shape parameters and/or material properties applied to the model. However, the discrepancy cannot be easily adjusted, especially, for the vibration characteristic of the disc model of a motorcycle. One of the factors that give a large impact on this discrepancy is a thermal history of the disc. That thermal history includes the one experienced in manufacturing process. In this paper, we examine the effects of residual stress on the natural frequency of motorcycle discs. The residual stress on the disc surface was measured by X-ray stress measurement method. It was followed by an eigenvalue analysis. In this analysis, we developed a unique method in which the residual stress was substituted by thermal stress.
Technical Paper

Formulation of Model for Estimation of Battery Capacity Degradation Based on Usage History

2013-04-08
2013-01-0501
As the electric vehicle (EV) market expands and we enter the period of fully fledged diffusion of the vehicles, evaluation of battery performance when secondhand vehicles are sold and when batteries are put to alternative uses will become increasingly important. However, the accurate measurement of battery performance for the purpose of battery evaluation represents a challenge when the batteries are fitted in a battery pack consisting of multiple cells. The authors therefore formulated a degradation estimation model for the evaluation of battery performance based on battery usage history. To formulate the model, parameters expressing the internal state of the battery are estimated from the battery's usage history; battery capacity is estimated with consideration of these parameters.
Technical Paper

Fuel Consumption and Power Performance Prediction in Outboard Motors for High-Speed Planing Boats using CFD Simulation

2012-10-23
2012-32-0099
Predicting fuel consumption and performance of an outboard motor for a high speed small planing boat are numerically challenging. The propeller is one of the most popular propulsion systems used for outboard motors. We focused our attention on the fact that the thrust performance of a propeller has a major impact on cruising fuel consumption and performance. We believe that we can numerically predict cruising fuel consumption, which has conventionally been estimated through experiential means, using accurate thrust performance measurements via CFD simulation without cavitations model. This study aims to develop a simulator that could quantitatively predict cruising fuel consumption and performance of an outboard motor used for a high speed small planing boat. After comparing the CFD simulation of propellers against the results of model tests, the simulated results are in good agreement with the experimental results.
Technical Paper

Honda Fuel Cell Electric Vehicle Development

2011-05-17
2011-39-7240
Honda has been taking measures since the late 1990s to address three issues raised by the automobile, from air pollution, which was already a matter of regulation, to the additional issues of global warming and energy. With observation of recent trends in society, what had been our concern about these three matters appears to have gradually been turning into certainty instead. Meanwhile, the demand for automobiles is expected to increase with the population growth in newly emerging countries, economic growth, and other such factors. At present, with automobiles dependent on oil for the greater part of their energy, it has become a challenge to secure a stable supply of reasonably priced oil while the global warming perspective requires reduction of CO2 emissions. This article will review the history of development of the fuel cell vehicle (FCV) equipped with the next-generation power plant capable of simultaneously providing the solutions demanded for all three automobile issues.
Technical Paper

Study and Application of Prediction Method for Low Frequency Road Noise

2010-04-12
2010-01-0507
When a vehicle drives over road seams or a bumpy surface, low-frequency noise called drumming is generated, causing driver discomfort. The generation of drumming noise is closely related to the vibration characteristics of the suspension, body frame, and body panels, as well as the acoustic characteristics of the vehicle interior. It is therefore difficult to take measures to get rid of drumming after the basic vehicle construction has been finalized. Aiming to ensure drumming performance in the drawing review phase, we applied the Finite Element Method (FEM) to obtain acoustical transfer functions of the body, and Multi Body Simulation to get suspension load characteristics. This paper presents the results of the study of drumming prediction technology using this hybrid approach.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Technical Paper

Experimental Modal Methodologies for Quantification of Body/Chassis Response to Brake Torque Variation

2007-05-15
2007-01-2343
Brake torque variation is a source of objectionable NVH body/chassis response. Such input commonly results from brake disk thickness variation. The NVH dynamic characteristics of a vehicle can be assessed and quantified through experimental modal testing for determination of mode resonance frequency, damping property, and shape. Standard full vehicle modal testing typically utilizes a random input excitation into the vehicle frame or underbody structure. An alternative methodology was sought to quantify and predict body/chassis sensitivity to brake torque variation. This paper presents a review of experimental modal test methodologies investigated for the reproduction of vehicle response to brake torque variation in a static laboratory environment. Brake caliper adapter random and sine sweep excitation input as well as body sine sweep excitation in tandem with an intentionally locked brake will be detailed.
Technical Paper

Stamping Effect on Oil Canning and Dent Resistance Performances of an Automotive Roof Panel

2007-04-16
2007-01-1696
The objective of this paper is to investigate the effect of stamping process on oil canning and dent resistance performances of an automotive roof panel. Finite element analysis of stamping processes was carried out using LS-Dyna to obtain thickness and plastic strain distributions under various forming conditions. The forming results were mapped onto the roof model by an in-house developed mapping code. A displacement control approach using an implicit FEM code ABAQUS/Standard was employed for oil canning and denting analysis. An Auto/Steel Partnership Standardized Test Procedure for Dent Resistance was employed to establish the analysis model and to determine the dent and oil canning loads. The results indicate that stamping has a positive effect on dent resistance and a negative effect on oil canning performance. As forming strains increase, dent resistance increases while the oil canning load decreases.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles

2006-10-16
2006-01-3381
Clarifying the impact of ETBE 8% blended fuel on current Japanese gasoline vehicles, under the Japan Clean Air Program II (JCAPII) we conducted exhaust emission tests, evaporative emission tests, durability tests on the exhaust after-treatment system, cold starting tests, and material immersion tests. ETBE 17% blended fuel was also investigated as a reference. The regulated exhaust emissions (CO, HC, and NOx) didn't increase with any increase of ETBE content in the fuel. In durability tests, no noticeable increase of exhaust emission after 40,000km was observed. In evaporative emissions tests, HSL (Hot Soak Loss) and DBL (Diurnal Breathing Loss) didn't increase. In cold starting tests, duration of cranking using ETBE 8% fuel was similar to that of ETBE 0%. In the material immersion tests, no influence of ETBE on these material properties was observed.
Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

The USAMP Magnesium Powertrain Cast Components Project

2006-04-03
2006-01-0522
Over the past five years, the US Automotive Materials Partnership (USAMP) has brought together representatives from DaimlerChrysler, General Motors, Ford Motor Company and over 40 other participant companies from the Mg casting industry to create and test a low-cost, Mg-alloy engine that would achieve a 15 - 20 % Mg component weight savings with no compromise in performance or durability. The block, oil pan, and front cover were redesigned to take advantage of the properties of both high-pressure die cast (HPDC) and sand cast Mg creep- resistant alloys. This paper describes the alloy selection process and the casting and testing of these new Mg-variant components. This paper will also examine the lessons learned and implications of this pre-competitive technology for future applications.
Technical Paper

Development of IMA Motor for 2006 Civic Hybrid

2006-04-03
2006-01-1505
Honda has employed IMA (Integrated Motor Assist) technology in the 2006 Civic Hybrid to enhance fuel efficiency and improve dynamic performance of a compact 4-door sedan. Our objective in developing the motor in the IMA system was to increase power, torque, and efficiency while maintaining the size of a previous motor. To achieve this aim, we focused on the following points: IPM (Interior Permanent Magnet) rotor structure High performance magnet Flat wire coil Polygonal bus ring structure Integrated 3-phase connector As a result, motor power was increased by 50% and achieved a 3 point average increase in efficiency, enabling vehicle dynamic performance and fuel efficiency objectives to be achieved.
X