Refine Your Search

Topic

Author

Search Results

Technical Paper

Vibrational Analysis Method on High-frequency Electric-drive Motor Noise

2020-04-14
2020-01-0463
When a vehicle is cruising, unpleasant noise in the 4 to 5 KHz high-frequency band can be heard at the center of all seats in the vehicle cabin. In order to specify the source of this noise, the correlation between the noise and airborne noise from the outer surface of the transmission was determined, and transfer path analysis was conducted for the interior of the transmission. The results indicated that the source of the noise was the 0th-order breathing mode specific to the drive motor. To make it possible to predict this at the desk, a vibrational analysis method was proposed for drive motors made up of laminated electrical steel sheets and segment-type coils. Material properties data for the electrical steel sheets and coils was employed in the drive motor vibrational analysis model without change. The shapes of the laminated electrical steel sheets and coils were also accurately modeled.
Technical Paper

Elucidation of the Sulfide Corrosion Mechanism in Piston Pin Bushings

2020-04-14
2020-01-1079
Recent trends to downsize engines have resulted in lighter weight and greater compactness. At the same time, however, power density has increased due to the addition of turbocharger and other such means to supplement engine power and torque, and this has increased the thermal and mechanical load. In this kind of environment, corrosion of the copper alloy bushing (piston pin bushing) that is press-fitted in the small end of the connecting rod becomes an issue. The material used in automobile bearings, of which the bushing is a typical example, is known to undergo sulfidation corrosion through reaction with an extreme-pressure additive Zinc Dialkyldithiophosphate (ZnDTP) in the lubricating oil. However, that reaction path has not been clarified. The purpose of the present research, therefore, is to clarify the reaction path of ZnDTP and copper in an actual engine environment.
Technical Paper

Residual Stress Analysis for Additive Manufactured Large Automobile Parts by Using Neutron and Simulation

2020-04-14
2020-01-1071
Metal additive manufacturing has high potential to produce automobile parts, due to its shape flexibility and unique material properties. On the other hand, residual stress which is generated by rapid solidification causes deformation, cracks and failure under building process. To avoid these problems, understanding of internal residual stress distribution is necessary. However, from the view point of measureable area, conventional residual stress measurement methods such as strain gages and X-ray diffractometers, is limited to only the surface layer of the parts. Therefore, neutron which has a high penetration capability was chosen as a probe to measure internal residual stress in this research. By using time of flight neutron diffraction facility VULCAN at Oak Ridge National Laboratory, residual stress for mono-cylinder head, which were made of aluminum alloy, was measured non-distractively. From the result of precise measurement, interior stress distribution was visualized.
Technical Paper

Prediction of Ductile Fracture Propagation of High Strength Steels in Automotive Structures

2019-04-02
2019-01-1097
Initiation and propagation of ductile fractures in crashed automotive components made from high strength steels are investigated in order to understand the mechanism of fracture propagation. Fracture of these components is often prone to occur at the sheet edge in a strain concentration zone under crash deformation. The fracture then extends intricately to the inside of the structure under the influence of the local stress and strain field. In this study, a simple tensile test and a 3-point bending test of high strength steels with tensile strengths of 590 MPa and 1180 MPa are carried out. In the tensile test, a coupon having a hole and a notch is deformed in a uniaxial condition. The effect of the notch type on the strain concentration and fracture behavior are investigated by using a digital imaging strain measurement system.
Technical Paper

Development of Traction Motor for New Fuel Cell Vehicle and New Electric Vehicle

2018-04-03
2018-01-0450
Honda’s purpose is to realize the joy and freedom of mobility and a sustainable society in which people can enjoy life. As such, three series of environmental vehicles-FCVs, BEVs, and PHEVs-have been developed so that users in communities around the world can select the ones best suited to their local energy circumstances and individual lifestyles. This paper discusses a structure that enhances both the motive power performance and quietness of a newly developed FCV/BEV traction motor. To enhance motive power performance, the research focused on the stator lamination technique. As for methods of affixing the stator’s layers, the practice with previous models has been adhesion lamination, using electric steel sheets that come pre-made with adhesive layers. Having adhesive layers, however, lowers the ratio (space factor) of steel sheet layers. The new motor uses electric steel sheets without an adhesive layer in order to enhance motive power performance.
Journal Article

Development of GFRTP Crush Box with Consideration of Use Environment and Effect of Fiber Orientation

2017-03-28
2017-01-0498
Regulation of automotive CO2 emissions is becoming increasingly stringent throughout the world in response to global warming. For automakers, this means a focus not only on increasing the fuel economy of powertrains, but also on reducing automotive driving resistance. High expectations are held for thermoplastic fiber-reinforced plastics (FRP) for the realization of automotive weight savings while also offering high levels of productivity and recyclability. Thermoplastic FRP crush boxes display a higher level of energy absorption performance than metal (steel, aluminum, etc.) crush boxes. This will contribute to automotive weight savings and improved package design. In the case of automotive front bumper beam systems, it is necessary to realize stable load characteristics irrespective of the use environment. It is therefore necessary to consider the effects of temperature and thermoplastic resin degradation.
Journal Article

Application of Rapid Heat and Cool Molding to High Strength Outer Parts without Painting Treatment

2016-11-08
2016-32-0024
Glass fiber reinforced plastic of polyamide is applied as one of the materials used for the high strength exterior parts of a motorcycle, such as a rear grab rail or a carrier, to which both strength and good exterior appearance are required. However, Glass Fiber reinforced Polypropylene (PPGF), which is relatively inexpensive material, has a property that the contained glass fibers are prone to be exposed at the surface and, therefore, the requirements for good appearance are hardly met by using PPGF. In this study, Heat and Cool molding method (H&C molding) was employed to realize a cost reduction by using PPGF yet without applying painting process, and the established method was applied to mass production while fulfilling the requirements for a good exterior appearance. In H&C molding, the metal molds are heated up by steam and cooled down by water after molding.
Journal Article

Development of Heat Resistant Titanium Alloy for Exhaust Valves Applicable for Motorcycles

2016-11-08
2016-32-0023
Amidst of the recent concerns on depletion of natural resources, a new heat resistant titanium alloy has been developed using the minimum amount of rare metals. Using Ti-811 as a basis and modifying the alloy composition to Ti-7Al-2Mo-0.2Si-0.15C-0.2Nb, the mechanical property, the creep resistance and the oxidation resistance at high temperatures are improved. At the same time, with the β transformation point shifted to a higher temperature, the hot formability is also improved. The newly developed alloy has made it possible to expand the application of titanium material to exhaust valves in reciprocating engines.
Technical Paper

Development of Aluminium Hollow Subframe Using High-Pressure Die Casting

2016-04-05
2016-01-0406
High-tensile steel plates and lightweight aluminum are being employed as materials in order to achieve weight savings in automotive subframe. Closed-section structures are also in general use today in order to efficiently increase parts stiffness in comparison to open sections. Aluminum hollow-cast subframe have also been brought into practical use. Hollow-cast subframe are manufactured using sand cores in gravity die casting (GDC) or low-pressure die casting (LPDC) processes. Using these manufacturing methods, it is difficult to reduce product thickness, and the limitations of the methods therefore make the achievement of weight reductions a challenge. The research discussed in this paper developed a lightweight, hollow subframe technology employing high-pressure die casting (HPDC), a method well-suited to reducing wall thickness, as the manufacturing method. Hollow-casting using HPDC was developed as a method of forming water jackets for water-cooled automotive engines.
Journal Article

Development of γ′-Fe4N Phase Control Technology and Low-Carbon Alloy Steel for High-Strength Nitrided Gear

2015-04-14
2015-01-0519
A new nitriding technology and material technology have been developed to increase the strength of microalloyed gears. The developed nitriding technology makes it possible to freely select the phase composition of the nitride compound layer by controlling the treatment atmosphere. The treatment environment is controlled to exclude sources of supply of [C], and H2 is applied as the carrier gas. This has made it possible to control the forward reaction that decomposes NH3, helping to enable the stable precipitation of γ′-phase, which offers excellent peeling resistance. A material optimized for the new nitriding technology was also developed. The new material is a low-carbon alloy steel that makes it possible to minimize the difference in hardness between the compound layer and the substrate directly below it, and is resistant to decline in internal hardness due to aging precipitation in the temperature range used in the nitriding treatment.
Journal Article

Effect of Surface Heat Treatment on Corrosion-Related Failure of the Suspension Spring

2015-04-14
2015-01-0518
In this research, a new wire material made using surface-reforming heat treatment was developed in order to enhance the corrosion fatigue resistance of suspension springs. The aim of surface reforming is to improve hydrogen embrittlement characteristics through grain refinement and to improve crack propagation resistance by partial softening of hardness. The grain refinement method used an α'→γ reversed transformation by rapid short-term heating in repeated induction heating and quenching (R-IHQ) to refine the crystal grain size of SAE 9254 steel spring wire to 4 μm or less. In order to simultaneously improve the fatigue crack propagation characteristics, the possibility of reducing the hardness immediately below the spring surface layer was also examined. By applying contour hardening in the second IHQ cycle, a heat affected zone (HAZ) is obtained immediately below the surface.
Journal Article

Development of State of the Art Compact and Lightweight Thermoelectric Generator Using Vacuum Space Structure

2015-04-14
2015-01-1691
Exhaust heat recovery units that use a thermoelectric element generate electricity by creating a temperature difference in the thermoelectric element by heating one side and cooling the other side of the thermoelectric circuit (module). In this case, the general structure does not directly join the thermoelectric module with the heat sink, and instead presses the thermoelectric module against the heat sink using bolts or other means in order to prevent thermoelectric element damage due to the difference in linear expansion between the cooled and heated sides of the thermoelectric module. However, this poses the issues associated with a complex, heavy and expensive structure. Therefore, a new vacuum space structure was devised that houses the thermoelectric module in a vacuum chamber and presses the module against the heat sink using atmospheric pressure.
Technical Paper

Technology to Enhance Deep-Drawability by Strain Dispersion Using Stress Relaxation Phenomenon

2015-04-14
2015-01-0531
When the strain is temporarily stopped during tensile testing of a metal, a stress relaxation phenomenon is known to occur whereby the stress diminishes with the passage of time. This phenomenon has been explained as the change of elastic strain into plastic strain. A technique was devised for deliberately causing strain dispersion to occur by applying the stress relaxation phenomenon during stamping. A new step motion that pause the die during forming was devised; it succeeded in modifying the deep-draw forming limit by a maximum of 40%. This new technique was verified through tensile and actual stamping tests. It was confirmed that the use of step motion causes the strain to disperse, thereby modifying the deep draw forming limit. The degree to which the forming limit is modified is dependent on the stop time and the temperature. Step motion technology increases the stampability of high-strength, forming-resistant materials and allows for expanded application of these materials.
Technical Paper

Development of Aluminum Powder Metal Composite Material Suitable for Extrusion Process used for Cylinder Sleeves of Internal Combustion Engines

2014-04-01
2014-01-1002
There are a couple of ways to manufacture aluminum cylinder blocks that have a good balance between productivity and abrasion resistance. One of them is the insert-molding of a sleeve made of PMC (Powder Metal Composite) by the HPDC (High Pressure Die Casting) method. However, in this method, cracks are apt to occur on the surface when the PMC sleeve is extruded and that has been a restriction factor against higher extrusion speed. The authors attempted to raise this extrusion temperature by eliminating the Cu additive process from the aluminum alloy powder in order to raise its melting point by approximately 50 °C. This enabled the wall of the extruded sleeve to be thinner and the extrusion speed to be higher compared to those of a conventional production method while avoiding the occurrence of surface cracks.
Technical Paper

Development of Torque Sensor with Nickel-Iron Alloy Plating for Pedal-Equipped Electric Vehicles

2013-10-15
2013-32-9045
This paper describes the development of non-contacting detection type torque sensor that realizes a small lost motion with light weight and low cost. Pedal-equipped electric vehicles are becoming popular in recent years. In those vehicles, torque sensors are usually necessary for measuring the pedaling force to determine the motor torque. We applied an integrated sensing structure and a non-contacting scheme utilizing inverse-magnetostrictive material to minimize the lost motions. As for the sensing material, nickel-iron alloy plating was used to obtain a wide dynamic range. In the tests using the actual structure, the output linearity deterioration occurred because of the strain distribution dispersion produced by the ratchet drive structure. Therefore, the effect of this strain distribution was examined. The inverse-magnetostrictive sensing material of nickel-iron alloy plating has an extremum on its output curve.
Technical Paper

Development of HPDC Alloy for Motorcycle Wheel Using Recycle Aluminum

2013-10-15
2013-32-9111
The new die cast (HPDC) wheel alloy has been developed using recycled aluminum to attain considerable reduction of energy at the time of material production to make large contribution to the reduction of CO2 emissions. The material for motorcycle body parts, especially for wheels, requires a sufficient elongation property. However, when recycled aluminum, which contains large amount of impurities, is used as main raw material, the intermetallic compounds crystalize out and the elongation property is deteriorated. Accordingly, we firstly made the investigations on the elements contained in a recycled aluminum and it was clarified that the elongation property was correlated to the shape of crystallized iron-based intermetallic compounds.
Technical Paper

Structure to Assist in the Prevention of Bimetallic Corrosion of Hybrid Doors

2013-04-08
2013-01-0386
The use of low-density materials in body panels is increasing as a measure to reduce the weight of the vehicle body. Honda has developed an aluminum/steel sheet hybrid door that is more effective in reducing weight than an all-aluminum door. Because aluminum was used in the door skin, bimetallic corrosion at the connection between the aluminum and the steel sheets represented an issue. It was possible that the difference in the electrical potential of the two metals might promote corrosion at the connection between the aluminum door skin and the steel sheet door panel, in particular at the lower edge of the door, where rainwater and other moisture tend to accumulate, with the result that the appeal of the exterior of the door might decline.
Technical Paper

Application of Load Path Index U* for Evaluation of Sheet Steel Joint with Spot Welds

2012-04-16
2012-01-0534
An attempt was made to apply the index U* in detail analysis of load paths in structural joints under static load, using as examples coupling structures of two joined frames with hat-shaped sections, and T-beam joint structures each including spot welds, both of which are widely used in automotive body structures. U* is a load path analysis index that expresses the strength of connection between load points and arbitrary points on a structure. It was possible to identify areas making up load paths by means of the magnitude of U* values, and to clarify the areas that should be coupled in order to achieve effective load transfer to contiguous members. In addition, because it is possible to determine whether or not each section of a structure possesses the potential for load transfer using U* analysis, the research also demonstrated that U* could be used as an indicator of joint structures providing efficient load transfer.
Journal Article

Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid

2011-04-12
2011-01-1335
Simulation was employed to estimate the fuel economy enhancement from the application of an exhaust heat recovery system using a thermoelectric generator (TEG) in a series hybrid. The properties of the thermoelectric elements were obtained by self-assessment and set as the conditions for estimating the fuel economy. It was concluded that applying exhaust system insulation and forming the appropriate combination of elements with differing temperature properties inside the TEG could yield an enhancement of about 3% in fuel economy. An actual vehicle was also used to verify the calculation elements in the fuel economy simulation, and their reliability was confirmed.
Technical Paper

Development of Nitrocarburized High Strength Crankshaft Through Controlling Vanadium Carbonitride Precipitation by Normalizing

2009-11-03
2009-32-0076
In addition to the requirements of high power output and compactness, further reduction of weight is being required for motorcycle engines from the standpoint of fuel economy and reduction of CO2 emissions. For this purpose, it is important to reduce crankshaft weight, which is the heaviest rotating part in the engine. The crankshaft has to be strong enough to bear loads, as the demands of weight reduction are increasing. Yet, productivity has to be considered at the same time even when increasing crankshaft strength. In this report of crankshaft material studies that feature high fatigue strength, machinability and distortion correct-ability, attention is given to the fact that the amount of vanadium, which is known as an element that enhances the strength with its precipitation, accelerates deposition, dissolved in the steel depends on the heating temperature.
X