Refine Your Search

Topic

Author

Search Results

Technical Paper

A Novel Vehicle-to-Vehicle Fast Charging Control System Utilizing Motor and Inverter in EV

2022-03-29
2022-01-0170
As electric vehicles become more widespread, such vehicles may be subject to “range anxiety” due to the risk of discharging during driving or the discharging when left unused for a long period. Accordingly, a vehicle equipped with a mobile charger that can provide a charge in an emergency. The vehicle with the mobile charger is usually composed of a large capacity battery, a power converter in a small truck. However, the large capacity battery and the power converter are disadvantageous in that they are large in size and expensive and should be produced as a special vehicle. In this paper, we propose a method to solve the problem using an internal EV system without requiring an additional power generation, battery and a charging-and-discharging device. The method is a novel Vehicle-to-Vehicle (V2V) fast charging control system utilizing motor and inverter in EV.
Technical Paper

The Root-Cause Analysis of Engine Stall at Hot Ambient Resulted from Low Pressure Fuel Pump

2022-03-29
2022-01-0624
In case of all gasoline vehicles such as the passenger vehicle, heavy duty truck and light duty truck etc., a fuel pump is located inside the fuel tank and transfers the fuel to an engine for stable driving, however, engine stall can be occurred by low pressure fuel pump. The boiling temperature of gasoline fuel is very low, the initial boiling point is around 40°C so fuel can boil easily while driving and end boiling point is around 190°C. It boils sequentially depending on the temperature. It becomes the criteria to determine the amount of vapor released inside the fuel tank at high temperature. The main cause of engine stall at high temperature is rapid fuel boiling by increasing fuel temperature. This causes a lot of vapor. Such vapor flows into the fuel pump which leading to decrease the pump load and the current consumption of the fuel pump continuously. This ultimately results in engine stall.
Technical Paper

Development of the Active Sound Generation Technology Using Motor Driven Power Steering System

2020-09-30
2020-01-1536
As the original engine sound is usually not enough to satisfy the driver’s desire for a sporty and fascinating sound, Active Noise Control (ANC) and Active Sound Design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicles using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifiers or actuators. This paper presents a new technology for generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) of a mass-production steering system. The existing steering hardware or motor is not changed, but only additional software is added. Firstly, an algorithm of this technology, called Active Sound Generation (ASG), is introduced which is compiled and included in the ECU target code. Then the high frequency noise issue and its countermeasures are presented.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 2, Engine Testing

2019-04-02
2019-01-0242
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Recent studies have shown that the following technologies offer significant improvements to the efficiency of turbocharged GDI engines: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled EGR (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency-improving technologies are individually well-understood, in this study we directly compare these technologies to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). The technologies tested are applied to a boosted and direct injected (DI) gasoline engine and evaluated both individually and combined.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 1, Engine Simulation

2019-04-02
2019-01-0245
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Promising technologies under consideration are: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled exhaust gas recirculation (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency improving options are well-understood individually, in this study we directly compare them to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). For this purpose we undertake a comprehensive simulation of the above technology options using a GT-Power model of the engine with a kinetics based knock combustion sub-model to optimize the fuel efficiency, taking into account the total in-cylinder dilution effects, due to internal and external EGR, on the combustion.
Technical Paper

Development of Adaptive Powertrain Control Utilizing ADAS and GPS

2019-04-02
2019-01-0883
This paper introduces the advancement of Engine Idle Stop-and-Go (ISG, also known as Auto Engine Stop-Start) and Neutral Coasting Control (NCC) with utilizing Advanced Driver Assistance System (ADAS) and GPS. The ISG and the In-Neutral Coasting (also known as Sailing or Gliding) have been widely implemented in recent vehicles for improving their fuel economy. However, many drivers find them somewhat disturbing because they basically change behaviors of their cars from what they used to. This annoyance discourages usages of those functions and eventually undermines their benefit of fuel saving. In order to mitigate the problem, new ISG and NCC algorithms are proposed. As opposed to the conventional logics that rely only on driver’s pedal action, the new algorithms determine whether or not to enable those functions for the given driving condition, based on the traffic information obtained using ADAS sensors and the location data from GPS and navigation map.
Technical Paper

An Application of Acoustic Metamaterial for Reducing Noise Transfer through Car Body Panels

2018-06-13
2018-01-1566
This paper presents the design of an additional structure based on acoustic metamaterial (AMM) for the reduction of vibro-acoustic transfer function of a car body panel. As vehicles are lighter and those engine forces are bigger recently, it has become more difficult to reduce the vibration and noise transfer through body panels by using just conventional NVH countermeasures. In this research, a new approach based on AMM is tried to reduce the vibration and noise transfer of a firewall panel. First, a unit cell structure based on the locally resonant metamaterial is devised and the unit cell’s design variables are studied to increase the wave attenuation in the stop band of a dispersion curve, where the Floquet-Bloch theorem is used to estimate the dispersion curve of a two-dimensional periodic structure. Also, the vibration transfer and the vibro-acoustic transfer are predicted in a FE model of meta-plate which is composed of a periodic system of the devised unit cell.
Technical Paper

Research on Stick & Sprag-Slip Phenomenon of Door Waist Belts

2018-04-03
2018-01-0674
The squeak noise generated during the moving of the door glass has a influence on the performance of vehicles felt by the consumer. In order to improve the noise, it is necessary to understand the principle of a friction vibration. In this paper, it is confirmed that the principle on the waist belt is most closely related to stick-slip and sprag-slip among various vibration characteristics. Stick-slip is expressed by energy accumulation and divergence due to difference in static and dynamic friction coefficient. Sprag-slip define instability of geometric structure due to angle of lips on the belt. In this paper, the physical model and the energy equation are established for the above two phenomena. Stick-slip can be solved by decreasing the difference of the static and dynamic friction coefficient. Sprag-slip is caused by the ratio of compressive and shear stiffness of the lips. The belt uses flocking to ensure durability, not coating.
Journal Article

On the Use of Driver-in-the-Loop (DIL) Systems in Commercial Vehicle Chassis Development

2017-01-10
2017-26-0242
A vehicle simulation model is developed, validated and integrated into a closed-loop virtual driving environment using a state-of-the-art hexapod driving simulator. Thirty variant states are implemented and evaluated subjectively on steering and handling performance quality and quantity. Standard open-loop objective testing manoeuvres are simulated and performance metrics are calculated, allowing for a systematic cross-correlation process. Graphical analysis of the correlation metrics proves that chassis changes may accurately be felt through the simulator interface. It is proposed how obtained correlation models may serve for driver-feel optimizing target setting in early vehicle development stages, frontloading a great deal of costly prototype testing. System requirements are established and benefits and limitations are portrayed.
Technical Paper

Development of an Algorithm to Automatically Detect and Distinguish Squeak and Rattle Noises

2015-06-15
2015-01-2258
Squeak and rattle (S&R) noises are undesirable noises caused by friction-induced vibration or impact between surfaces. While several computer programs have been developed to automatically detect and rate S&R events over the years, no reported work has been found that can detect squeak and rattle noises and distinguish them. Because the causes of squeak noises and rattle noises are different, knowing if it is a squeak noise or rattle noise will be very helpful for automotive engineers to choose an appropriate measure to solve the problem. The authors have developed a new algorithm to differentiate squeak noises and rattle noises, and added it to the S&R detection algorithm they had developed previously. The new algorithm utilizes a combination of sound quality metrics, specifically sharpness, roughness, and fluctuation strength.
Technical Paper

A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly

2015-06-15
2015-01-2257
Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
Technical Paper

A Study on the Transfer Path Analysis of Brake Creep Groan Noise

2014-09-28
2014-01-2510
Creep groan noise occurs in a just moving vehicle by the simultaneous application of torque to the wheel and the gradual release of brake pressure in-vehicle. It is the low frequency noise giving the driver a very uncomfortable feeling. It is caused by the stick-sleep phenomenon at the lining and disc interface. Recently, the field claim of low frequency creep groan has increased. There are a lot of efforts to improve creep groan noise by means of modification of lining material. In this paper, Transfer path of creep groan noise was analyzed through ODS and TPA. Additionally the correlation between Source (Brake torque variation, Brake vibration) and Creep Groan Sound level was discussed. Finally countermeasure to Creep Groan noise was suggested.
Technical Paper

Study of Reduction Method of Brake Grind Noise

2014-09-28
2014-01-2513
Rust accumulated on disc surfaces causes brake judder and grind noise. This paper deals with grind noise(wire brush brake noise) in vehicles which is a low frequency vibration and broadband noise problem at 100∼1kHz that appears in low vehicle speed. Recently, the customer complaints have increased for grind and creep groan noise more than squeal noise. Low frequency brake noise is a combined effect of brake and suspension systems working with each other. The noise transfer path is also important. Experimental results are confirmed through ODS, Modal, TPA and 3D acoustic camera for noise transmission path. Finally, reduction methods of grind noise are presented.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Technical Paper

Design for NVH Performance and Weight Reduction in Plastic Timing Chain Cover Application

2014-04-01
2014-01-1043
Light weighting is a critical objective in the automotive industry to improve fuel efficiency. But when redesigning parts for light weight, by changing from metal to plastic, the resulting design gives NVH issues due to differences in part mass and material stiffness. Many parts were not converted from metal to plastic because of NVH issues that could not be solved. Many engine parts such as cylinder head cover, air intake manifold, oil pan and etc. previously made of metal have since long been replaced with plastic. But timing chain cover has not been replaced because of the aforementioned issue. Sealing performance due to the dynamic characteristics of the application is another challenging factor. In this paper, the key aspects of the plastic timing chain cover as well as its advantage are presented.
Technical Paper

Material NVH Convergence Technology for a Plastic Intercooler Pipe

2014-04-01
2014-01-1040
The main contribution of this paper is to employ a sound and vibration theory in order to develop a light and cost effective plastic intercooler pipe. The intercooler pipe was composed of two rubber hoses and one aluminum pipe mounted between an ACV (Air Control Valve) and an intercooler outlet. The engineering design concept is to incorporate low-vibration type bellows and an impedance-mismatched center pipe, which replaces the rubber hoses and aluminum pipe respectively. The bellows were designed to adapt powertrain movement for high vibration transmission loss to the intercooler outlet. Also, the impedance-mismatched center pipe was implemented to increase reflected wave by using relatively higher modulus than bellows part and applying a SeCo (Sequential Coextrusion) processing method.
Technical Paper

Development of Nu 2.0L CVVL Engine

2014-04-01
2014-01-1635
Hyundai Motor Group launched a Continuously Variable Valve Lift (CVVL) engine in 2012. The engine is equipped with HMG's unique CVVL mechanism and is characterized by low fuel consumption, high performance and its responsiveness. The CVVL mechanism is based on a six-linkage mechanism and has advantages of compactness and durability. The engine is a 4 cylinder In-Line, 2.0L gasoline engine and is designed for a mid-sized passenger car. The engine increases fuel efficiency by 7.7% and the peak engine power by 4.2%. One of the most challenging issues in producing a CVVL engine is the valve lift deviations throughout the engine cylinders. The valve cap shim and set screw were designed to adjust the valve lift deviations. Cap shim thickness is chosen by measuring the valve top height, and shoe lift of the cam carrier assembly. The set screw is an auxiliary device to adjust the valve lift deviation.
Technical Paper

Development of Vibration Suppression Control Strategy for Motor System of Eco-Friendly Vehicles

2014-04-01
2014-01-1874
Development of eco-friendly vehicles have risen in importance due to fossil fuel depletion and the strengthened globalized emission control regulatory requirements. A lot of automotive companies have already developed and launched various types of eco-friendly vehicles which include hybrid vehicles (HEVs) or electric vehicles (EVs) to reduce fuel consumption. To maximize fuel economy Hyundai-Kia Motor Company has introduced eco-friendly vehicles which have downsized or eliminated vibration damping components such as a torque converter. Comparing with Internal Combustion Engine(ICE) powered vehicles, one issue of the electric motor propulsion system with minimized vibration damping components is NVH (Noise, Vibration and Harshness). The NVH problem is caused by output torque fluctuation of the motor system, resulting in the degradation of ride comfort and drivability.
Technical Paper

Improvement of Manufacturing and Evaluation Technology for the Light Weight Brake Disc Composed of Hybrid Type Material

2014-04-01
2014-01-1009
Reducing unsprung mass of the car is a representative method to enhance the ride & handling performance and fuel efficiency. In this study, brake disc weight is reduced 15∼20% using a hybrid type material. The basis for this study is the separation of the friction surface and HAT(mounting part). Aluminum material is applied in the HAT for a light weight effect. Gray iron is applied in the friction surface section to maintain braking performance. Two types of joining between aluminum and cast iron are developed. One is the aluminum casting method utilizing a gray iron insert and the other is a bolted assembly method. Detailed structure, process and material are optimized using try-out & dynamometer experiments. The Reliability of this development is proved through durability (dynamometer and vehicle) testing.
Technical Paper

A Sensor Fusion Digital-Map System for Driver Assistance

2013-04-08
2013-01-0734
A traffic situation is getting more complex in urban areas. Various safety systems of an automobile have been developed but fatal and serious accidents still can be made by driver's faults or distractions. The system supporting extend of driver's recognition area is going to be an important part of future intelligent vehicles in order to prevent accidents. In this paper we propose sensor fusion system based on a digital-map for driver assistance. The accurate localization of a host vehicle is achieved by a stereo vision sensor and a digital-map using polygon matching algorithm in urban area. A single-row laser scanner is used for tracking multiple moving objects. The coordinate transformation from sensor frame to global frame is performed to visualize the moving objects on a digital-map. An experiment was conducted in an urban canyon where the GPS signals are frequently interrupted.
X