Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 2, Engine Testing

2019-04-02
2019-01-0242
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Recent studies have shown that the following technologies offer significant improvements to the efficiency of turbocharged GDI engines: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled EGR (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency-improving technologies are individually well-understood, in this study we directly compare these technologies to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). The technologies tested are applied to a boosted and direct injected (DI) gasoline engine and evaluated both individually and combined.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 1, Engine Simulation

2019-04-02
2019-01-0245
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Promising technologies under consideration are: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled exhaust gas recirculation (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency improving options are well-understood individually, in this study we directly compare them to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). For this purpose we undertake a comprehensive simulation of the above technology options using a GT-Power model of the engine with a kinetics based knock combustion sub-model to optimize the fuel efficiency, taking into account the total in-cylinder dilution effects, due to internal and external EGR, on the combustion.
Technical Paper

Prediction of In-Cylinder Pressure for Light-Duty Diesel Engines

2019-04-02
2019-01-0943
In recent years, emission regulations have been getting increasingly strict. In the development of engines that comply with these regulations, in-cylinder pressure plays a fundamental role, as it is necessary to analyze combustion characteristics and control combustion-related parameters. The analysis of in-cylinder pressure data enables the modelling of exhaust emissions in which characteristic temperature can be derived from the in-cylinder pressure, and the pressure can be used for other investigations, such as optimizing efficiency and emissions through controlling combustion. Therefore, a piezoelectric pressure sensor to measure in-cylinder pressure is an essential element in the engine research field. However, it is difficult to practice the installation of this pressure sensor on all engines and on-road vehicles owing to cost issues.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion

2019-04-02
2019-01-0207
Numerical investigation of engine performance and emissions of a six-stroke gasoline compression ignition (GCI) engine combustion at low load conditions is presented. In order to identify the effects of additional two strokes of the six-stroke engine cycle on the thermal and chemical conditions of charge mixtures, an in-house multi-dimensional CFD code coupled with high fidelity physical sub-models along with the Chemkin library was employed. The combustion and emissions were calculated using a reduced chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Two power strokes per cycle were achieved using multiple injections during compression strokes. Parametric variations of injection strategy viz., individual injection timing for both the power strokes and the split ratio that enable the control of combustion phasing of both the power strokes were explored.
Technical Paper

Numerical Study on Fluid Flow and Heat Transfer Characteristics of a Ventilated Brake Disc Connected to a Wheel

2018-10-05
2018-01-1878
The role of a brake disc is to convert the kinetic energy of automobiles into thermal energy caused by friction between the brake pads and disc surfaces. The braking performance of an overheated disc is decreased due to hot judder and fade. Hence, the cooling technology of a brake disc is one of the most important issues related to automobile safety. In the present study, the fluid flow and heat transfer analysis of a ventilated brake disc are conducted numerically. Some geometries of automotive parts such as bearings, hubs and wheels are considered in this study. The commercial code ANSYS CFX is used to simulate the fluid flow and the conjugate heat transfer which includes conduction and convection. To evaluate the cooling performance in each case, the results, including the flow patterns of cooling air inside the wheel and the heat transfer coefficient distribution at the disc surfaces, were investigated and compared for various disc-hub combinations.
Technical Paper

Incorporation of Friction Material Surface Inhomogeneity in Complex Eigenvalue Analysis to Improve the Accuracy of Brake Squeal Analysis

2018-10-05
2018-01-1873
The sliding surface of the brake friction material is not uniform but composed of random contact plateaus with a broad pressure distribution, which are known to closely related to the triggering mechanism of friction induced noise and vibrations. The non-uniform contact plateaus are attributed to the various ingredients in the friction material with a broad range of physical properties and morphology and the size and stiffness of the plateau play crucial roles in determining the friction instability. The incorporation of friction surface inhomogeneity is, therefore, crucial and has to be counted to improve the accuracy of the numerical calculation to simulate brake noise. In this study, the heterogeneous nature of the friction material surface was employed in the simulation to improve the correlation between numerical simulations and experimental results.
Technical Paper

Virtual NOx sensor for Transient Operation in Light-Duty Diesel Engine

2016-04-05
2016-01-0561
Currently, diesel engine-out exhaust NOx emission level prediction is a major challenge for complying with the stricter emission legislation and for control purpose of the after-treatment system. Most of the NOx prediction research is based on the Zeldovich thermal mechanism, which is reasonable from the physical point of view and for its simplicity. Nevertheless, there are some predictable range limitations, such as low temperature with high EGR rate operating conditions or high temperature with low EGR rates. In the present paper, 3 additional considerations, pilot burned gas mixing before the main injection; major NO formation area; concentration correction, were applied to the previously developed real-time NO estimation model based on in-cylinder pressure and data available from ECU. The model improvement was verified on a 1.6 liter EURO5 diesel engine in both steady and transient operation.
Technical Paper

Optimization of Cooling Air Duct and Dust Cover Shape for Brake Disc Best Cooling Performance

2014-09-28
2014-01-2519
Owing to the enhanced performance of engines these days, more heat should be dissipated in the braking system. Failure of doing this properly causes temperature rise in the brake disc which result in the brake fade, disc distortion, brake judder, etc. A cooling-air-duct was proposed as a solution to prevent these from happening. In this paper, we present our work based on experiments optimized parameters such as direction, location, shapes and the size of the duct for the cooling-air-duct installation in real cars. We installed the duct extended from a front bumper to a rear wheel guard. Experimental parameters were compared with theoretical analysis using the impinging jet analysis. The heat transfer coefficients were determined by using the finite elements method (FEM). We found that our experimental data is supportive of theoretical analysis. We believe that our results should serve an useful guideline for designing the cooling-air-duct for braking system.
Technical Paper

Development of Valvetrain System to Improve Knock Characteristics for Gasoline Engine Fuel Economy

2014-04-01
2014-01-1639
It is difficult to reach higher compression ratios of the gasoline engine even though higher compression ratios improve thermal efficiency. One of the barriers is large torque drop led by knocking. Extensive researches to suppress knocking of the gasoline engine have been conducted. It is focused on lowering the temperature of fuel mixture in combustion chamber at compression top dead center (TDC). This paper covers the new valvetrain system to decrease the temperature of exhaust valve bottom (combustion) side. Hollow head and stem sodium filled valve (HHSV) have shown more heat transfer from combustion chamber to valve seat insert and valve guide, and higher thermal conductivity valve seat insert (HVSI) and valve guide (HVG) help to decrease valve temperature lower by higher heat transfer.
Technical Paper

Combined Condensing Air-Conditioning System

2014-04-01
2014-01-0712
In order to improve the fuel consumption ratio of the vehicle, a great deal of research is being carried out to improve air-conditioning efficiency. Increasing the efficiency of the condenser is directly connected to the power consumption of the compressor. This paper describes an experimental method of using an additional water-cooled condenser to reduce power consumption and decrease discharge pressure of the air-conditioning system. First, the principle of a combined cooling (water + air) method was evaluated theoretically. Next, experimental proof was conducted with the additional water-cooled condenser. The shape and structure is similar to the plate type of the transmission oil cooler used in a radiator. Through a number of tests, it was found that it is possible is to reduce power consumption of compressor by decreasing discharge pressure.
Technical Paper

A Development of Urea Solution Injection Quantity Decision Logic for SCR System

2013-04-08
2013-01-1069
In this project, phenomena in a SCR catalyst, such as heat transfer and catalytic reactions, are modeled numerically. The model is simplified to be integrated on an electronic control unit. The calibration process for this model has been developed, which is performed on gas bench and validated on a vehicle equipped with a Urea-SCR system and a Rapid Prototype Control Unit. With this simplified SCR reaction model, it is possible to estimate NH3 consumption and properly control the urea injection quantity with less calibration efforts.
Technical Paper

A Study for Improving the Sound Quality of Vehicle Horns through Acoustic Characteristics Analysis and CAE Method Development

2013-04-08
2013-01-0422
It is necessary for vehicle horns not only to satisfy regulations on the sound level but also to fulfill various demands related with sound quality. For example, a disk type horn which is attached on most of small size vehicles has been required to improve its sharp feeling sound. However, the improvement of horn sound has been deterred mainly due to the deficiency of the understanding on how design factors are related with emotional judgments on horn sound. In addition, a proper CAE tool is not available in the process of horn design since it is difficult to describe multi-physical phenomena engaged with horns. The purpose of this study is to improve the sound quality of a disk type horn. In order to achieve this goal, firstly, acoustic characteristics of horns were obtained through a series of experiments. In addition, various sound quality metrics were examined in order to derive design factors affecting sound quality enhancement.
Technical Paper

Evaluation of Time-Resolved Nano-Particle and THC Emissions of Wall-Guided GDI Engine

2011-10-06
2011-28-0022
A nano-sized PM and THC emission characteristics were investigated according to the fuel injection strategy such as a pressure and timing in the GDI engine. On the part-load condition, the particulate emissions exhibited a strong sensitivity to the injection timing. The fuel injection pressure also had a great association with the nano-particles and THC. A size of PM exhausted from the GDI engine located near 10nm on the part-load. In contrast, accumulation mode particles within 60 - 80nm mainly exhausted during the cold transient start phase. Increment of fuel injection pressure positively affected on the nano-particle and THC emissions during the start of the engine, as well.
Technical Paper

Model Based Control for a Pressure Control Type CVT

2004-08-23
2004-40-0031
A model based control algorithm for the pressure control type CVT has been developed. First, a P-line is proposed from the steady state relationship between the primary and secondary pressure for the given speed ratio to predict the shift performance. The P-line shows the pressure difference from the steady state primary pressure to the maximum(or minimum) pressure available for the given secondary pressure. It is found from the P-line that the bigger the pressure difference, the faster the shift speed. Based on the steady state characteristics of the pressure control type ratio control valve(RCV), the model based control algorithm is proposed. In the model based control, ratio control solenoid valve(RCSV) control duty is supplied in the feedforward loop.
Technical Paper

Modeling of Pulse Width Modulation Pressure Control System for Automatic Transmission

2002-03-04
2002-01-1257
Generally, the widely used hydraulic control system in automatic transmissions is pulse width modulation (PWM) type. It consists in a PWM solenoid valve and a reducing type second stage valve, so called pressure control valve (PCV), to amplify pressure or flow rate. In this study, the mathematical models of the PWM solenoid valve and the PCV with moderate complexity are proposed. Then, their behavior is analyzed from the steady state characteristics. Finally, we find that there are good matches between the dynamic simulation results and the experimental data.
Technical Paper

Development of Composite Body Panels for a Lightweight Vehicle

2001-03-05
2001-01-0102
Recently weight reduction is increasingly needed in automotive industry to improve fuel efficiency and to meet a CO2 emission requirement. In this paper, we prepared composite body panels for the lightweight vehicle based on a small passenger car. Fender, roof, door, side outer panel, and tailgate are made from hand layup using a glass/carbon hybrid reinforcement. Hood is made from low pressure sheet molding compound (SMC) to investigate feasibility of mass production. Both hand layup and low pressure SMC materials are newly developed and their physical properties are examined. CAE simulation was done for strength analysis and optimization of thickness for the body panels.
Technical Paper

Flow Analysis and Catalytic Characteristics for the Various Catalyst Cell Shapes

1999-05-03
1999-01-1541
The shape of unit cell of catalytic converter has great influence on the conversion efficiency and pressure drop characteristics. Therefore, the properties of design parameters of catalyst monolith were analyzed and the parameters of various cell shapes of catalyst were compared. Also, the numerical study of a three dimensional compressible flow in a Close-coupled Catalyst Converter (CCC) system was performed to investigate the flow characteristics and the flow distribution of exhaust gases. Unsteady flow analysis shows that severe interferences of each pulsating exhaust gas flow as well as geometric factors (junction, mixing pipe, cell shape etc.) influence greatly on the flow uniformity and flow characteristic in substrate. The results can be applied for the catalytic converter design.
Technical Paper

A Study on the Flow in the Engine Intake System

1995-09-01
952067
To design an optimum engine intake system, a flow model for the intake manifold was developed by the method of characteristics. The flow in the intake manifold was one-dimensional, and finite difference equations were derived from the governing equations of flow. The thermodynamic properties inside a cylinder were found by the first law of thermodynamics, and the boundary conditions were formulated using a steady flow model. By comparing the calculated results with experimental data, the appropriate boundary conditions and convergence limits for a flow model were established. From this model, design variables for the intake system were investigated. The optimum manifold length became shorter when the engine speed were increased. The effect of intake valve timings on inlet air mass was also studied by this model. Advancing intake valve opening decreased inlet air mass slightly, and the optimum intake valve closing was found.
X