Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of the Active Sound Generation Technology Using Motor Driven Power Steering System

2020-09-30
2020-01-1536
As the original engine sound is usually not enough to satisfy the driver’s desire for a sporty and fascinating sound, Active Noise Control (ANC) and Active Sound Design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicles using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifiers or actuators. This paper presents a new technology for generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) of a mass-production steering system. The existing steering hardware or motor is not changed, but only additional software is added. Firstly, an algorithm of this technology, called Active Sound Generation (ASG), is introduced which is compiled and included in the ECU target code. Then the high frequency noise issue and its countermeasures are presented.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Development of the Wireless Power Transfer Technology for a Sliding Door

2019-04-02
2019-01-0485
The sliding door’s movement is 3-dimensional unlike the conventional door. So the electric power and signal are exchanged via the long ‘Power Cable’. It has a quite complex structure in order to be suitable to connect the vehicle’s body and the sliding door even during it’s moving. As the result, it is more expensive than conventional door’s one and the quality could not be guaranteed easily. In this paper, I have developed new technology which could transfer electric power by ‘wireless transfer’ in order to resolve the problem from using ‘Power cable’. I would propose the proper structure to transfer the electric power at any position of the sliding door without any physical connection. To transfer the electric power which drives the window regulator and the actuators in door, I have applied the ‘inductive coupling’ system.
Technical Paper

Incorporation of Friction Material Surface Inhomogeneity in Complex Eigenvalue Analysis to Improve the Accuracy of Brake Squeal Analysis

2018-10-05
2018-01-1873
The sliding surface of the brake friction material is not uniform but composed of random contact plateaus with a broad pressure distribution, which are known to closely related to the triggering mechanism of friction induced noise and vibrations. The non-uniform contact plateaus are attributed to the various ingredients in the friction material with a broad range of physical properties and morphology and the size and stiffness of the plateau play crucial roles in determining the friction instability. The incorporation of friction surface inhomogeneity is, therefore, crucial and has to be counted to improve the accuracy of the numerical calculation to simulate brake noise. In this study, the heterogeneous nature of the friction material surface was employed in the simulation to improve the correlation between numerical simulations and experimental results.
Technical Paper

An Application of Acoustic Metamaterial for Reducing Noise Transfer through Car Body Panels

2018-06-13
2018-01-1566
This paper presents the design of an additional structure based on acoustic metamaterial (AMM) for the reduction of vibro-acoustic transfer function of a car body panel. As vehicles are lighter and those engine forces are bigger recently, it has become more difficult to reduce the vibration and noise transfer through body panels by using just conventional NVH countermeasures. In this research, a new approach based on AMM is tried to reduce the vibration and noise transfer of a firewall panel. First, a unit cell structure based on the locally resonant metamaterial is devised and the unit cell’s design variables are studied to increase the wave attenuation in the stop band of a dispersion curve, where the Floquet-Bloch theorem is used to estimate the dispersion curve of a two-dimensional periodic structure. Also, the vibration transfer and the vibro-acoustic transfer are predicted in a FE model of meta-plate which is composed of a periodic system of the devised unit cell.
Technical Paper

Research on Stick & Sprag-Slip Phenomenon of Door Waist Belts

2018-04-03
2018-01-0674
The squeak noise generated during the moving of the door glass has a influence on the performance of vehicles felt by the consumer. In order to improve the noise, it is necessary to understand the principle of a friction vibration. In this paper, it is confirmed that the principle on the waist belt is most closely related to stick-slip and sprag-slip among various vibration characteristics. Stick-slip is expressed by energy accumulation and divergence due to difference in static and dynamic friction coefficient. Sprag-slip define instability of geometric structure due to angle of lips on the belt. In this paper, the physical model and the energy equation are established for the above two phenomena. Stick-slip can be solved by decreasing the difference of the static and dynamic friction coefficient. Sprag-slip is caused by the ratio of compressive and shear stiffness of the lips. The belt uses flocking to ensure durability, not coating.
Technical Paper

Control of Steer by Wire System for Reference Steering Wheel Torque Tracking and Return-Ability

2018-04-03
2018-01-0566
This paper proposes a torque tracking algorithm via steer by wire to achieve the target steering feel and proposed a modified friction model to obtain return-ability. A three dimensional reference steering wheel torque map is designed using the measurement data of the steering characteristics of the target vehicle at a transition test and a weave test. In order to track the reference steering wheel torque, a sliding mode control is used in the tracking algorithm. In addition, to achieve return-ability, the modified friction model for steer by wire is used instead of the friction model defined in the reference steering wheel torque map. The modified friction model is composed of various models according to the angular velocity. The angular velocity and the angular acceleration used in the control algorithm are estimated using a kalman filter.
Technical Paper

The Root Cause Analysis of Steel Fuel Tank Cracking at a Fatigue Point and Test Method Development of Durability

2017-03-28
2017-01-0393
Fuel tank in vehicle must hold the fuel in a stable way under any driving condition. However, the fuel tank might not conserve the fuel firmly in case a crack emerged while the fuel tank is exposed to different driving condition. Basically, when the engine is in purging at a normal ambient temperature before fuel boiling, the pressure inside the fuel tank decreases. However, the pressure inside a fuel tank increases while a vehicle is driven at extreme hot ambient temperature as fuel is boiling. This repetitive pressure change in the fuel tank comes with fuel tank’s physical expansion and shrink, which would cause a damage to the fuel tank. The main purpose of this research is to investigate the root cause of why fuel tank cracks at a fatigue point. We also aim to set up the method of how to test durability of the fuel tank in association with the pressure inside the tank.
Technical Paper

Development of Integrated Chassis Control for Limit Handling

2016-04-05
2016-01-1638
This paper presents the integrated chassis control(ICC) of four-wheel drive(4WD), electronic stability control(ESC), electronic control suspension(ECS), and active roll stabilizer(ARS) for limit handling. The ICC consists of three layers: 1) a supervisor determines target vehicle states; 2) upper level controller calculates generalized forces; 3) lower level controller, which is contributed in this paper, optimally allocates the generalized force to chassis modules. The lower level controller consists of two integrated parts, 1) longitudinal force control part (4WD/ESC) and 2) vertical force control part (ECS/ARS). The principal concept of both algorithms is optimally utilizing the capability of the each tire by monitoring tire saturation, with tire combined slip. By monitoring tire saturation, 4WD/ESC integrated system minimizes the sum of the tire saturation, and ECS/ARS integrated system minimizes the variance of the tire saturation.
Technical Paper

Development of an Algorithm to Automatically Detect and Distinguish Squeak and Rattle Noises

2015-06-15
2015-01-2258
Squeak and rattle (S&R) noises are undesirable noises caused by friction-induced vibration or impact between surfaces. While several computer programs have been developed to automatically detect and rate S&R events over the years, no reported work has been found that can detect squeak and rattle noises and distinguish them. Because the causes of squeak noises and rattle noises are different, knowing if it is a squeak noise or rattle noise will be very helpful for automotive engineers to choose an appropriate measure to solve the problem. The authors have developed a new algorithm to differentiate squeak noises and rattle noises, and added it to the S&R detection algorithm they had developed previously. The new algorithm utilizes a combination of sound quality metrics, specifically sharpness, roughness, and fluctuation strength.
Technical Paper

A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly

2015-06-15
2015-01-2257
Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Technical Paper

Optimization of Body Structure for Road Noise Performance

2014-04-01
2014-01-0010
It is common knowledge that body structure is an important factor of road noise performance. Thus, a high stiffness of body system is required, and determining their optimized stiffness and structure is necessary. Therefore, a method for improving body stiffness and validating the relationship between stiffness and road noise through CAE and experimental trials was tested. Furthermore, a guideline for optimizing body structure for road noise performance was suggested.
Technical Paper

Modeling and Validation of ABS and RSC Control Algorithms for a 6×4 Tractor and Trailer Models using SIL Simulation

2014-04-01
2014-01-0135
A Software-in-the-Loop (SIL) simulation is presented here wherein control algorithms for the Anti-lock Braking System (ABS) and Roll Stability Control (RSC) system were developed in Simulink. Vehicle dynamics models of a 6×4 cab-over tractor and two trailer combinations were developed in TruckSim and were used for control system design. Model validation was performed by doing various dynamic maneuvers like J-Turn, double lane change, decreasing radius curve, high dynamic steer input and constant radius test with increasing speed and comparing the vehicle responses obtained from TruckSim against field test data. A commercial ESC ECU contains two modules: Roll Stability Control (RSC) and Yaw Stability Control (YSC). In this research, only the RSC has been modeled. The ABS system was developed based on the results obtained from a HIL setup that was developed as a part of this research.
Technical Paper

Design Optimization of Suspension Kinematic and Compliance Characteristics

2014-04-01
2014-01-0394
In the early stage of vehicle development process, it is customary to establish a set of goals for each kinematic and compliance (K&C) characteristic and try to find out design variables such as the location of hard points and bushing stiffness which can achieve these goals. However, since it is very difficult to find out adequate set of design variables which satisfy all the goals, many engineers should rely on their own experiences and intuitions, or repeat trial and error to design a new suspension and improve old one. In this research, we develop a suspension design process by which suspension K&C characteristic targets can be achieved systemically and automatically. For this purpose, design optimization schemes such as design of experiments (DoE) and gradient-based local optimization algorithm are adopted.
Technical Paper

Body Optimization for Front Loading Design Process

2014-04-01
2014-01-0388
An innovative design process is proposed to be applicable in the early conceptual design phase as a means of front loading design. The objective of the study is to minimize trial and errors in the detailed design phase and to shorten the overall design period. The process includes design optimization which is based on efficient modeling techniques. An integrated CAD/CAE modeling method and a simplified quality FE model are key factors in the course of effectuation. The conceptual modeling takes into account the adaptability of computer-generated models with the use of CAD/CAE integrated design environment. To achieve maximum efficiency in the repeated computations in optimization, an FE modeling approach is introduced in terms of simplicity and quality. The proposed FE modeling employs beam and spring elements to construct vehicle body models, which is targeted to produce an instant analysis result with a robust conceptual design at the incipient phase of development.
Technical Paper

A Study of Combustion Control Parameter Optimization in a Diesel Engine Using Cylinder Pressure

2014-04-01
2014-01-1352
In diesel engine development, fuel consumption, emissions and combustion noise have been main development objectives for fuel economy, low emissions and NVH. These main objectives can be achieved with advanced engine technologies. As electronic actuating systems are widely applied on diesel engines, elaborate control is required. This is because the main development targets are greatly affected by engine control parameters but frequently have a trade-off relationship. Therefore, the optimization of combustion control parameters is one of the most challenging tasks for improvement. As an efficient method, the DOE methodology has been used in engine calibration. In order to develop a mathematical model, the input and output values must be measured. Unlike other variables, combustion noise has been continually reported to have better indication method in simplified way. In this paper, advanced noise index from cylinder pressure signal is applied on engine test.
Technical Paper

Development of Effective Bicycle Model for Wide Ranges of Vehicle Operations

2014-04-01
2014-01-0841
This paper proposes an effective nonlinear bicycle model including longitudinal, lateral, and yaw motions of a vehicle. This bicycle model uses a simplified piece-wise linear tire model and tire force tuning algorithm to produce closely matching vehicle trajectory compared to real vehicle for wide vehicle operation ranges. A simplified piece-wise tire model that well represents nonlinear tire forces was developed. The key parameters of this model can be chosen from measured tire forces. For the effects of dynamic load transfer due to sharp vehicle maneuvers, a tire force tuning algorithm that dynamically adjusts tire forces of the bicycle model based on measured vehicle lateral acceleration is proposed. Responses of the proposed bicycle model have been compared with commercial vehicle dynamics model (CarSim) through simulation in various vehicle maneuvers (ramp steer, sine-with-dwell).
Technical Paper

Two-Step Hood Opening System Development for Easier Hood Opening Operation

2014-04-01
2014-01-0363
Recently, the demand for improving the merchantability of hood open system has been increasing. A novel concept hood open system was proposed by Hyundai Motor Company (HMC) in 2012, which was based on a two-step open latch mechanism. The new hood opening mechanism satisfies Safety laws and improves merchantability.
X