Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Direct Coating Technology for Metallic Paint Replacement

2019-04-02
2019-01-0186
Direct Coating is a new processing technique which applies a single-layer polyurethane coating directly to a plastic part within a 2-shot molding cycle. The advantages of Direct Coating over traditional paint are improved surface quality, scratch resistance, and cost-effective processing. This concept has been previously showcased in high-gloss piano black with the simple geometry of the exterior door garnish. In this paper, the capabilities of Direct Coating are expanded to include metallic pigments and complex geometries for interior trim. For this development project, the Hyundai Sonata center fascia was selected as the target application due to the complex flow geometry around the bezel, and the high occurrence of customer contact, necessitating scratch and chemical resistance. Results of plaque-level testing showed that the coating material passed all requirements, including interior chemical resistance and scratch resistance.
Technical Paper

Research on Stick & Sprag-Slip Phenomenon of Door Waist Belts

2018-04-03
2018-01-0674
The squeak noise generated during the moving of the door glass has a influence on the performance of vehicles felt by the consumer. In order to improve the noise, it is necessary to understand the principle of a friction vibration. In this paper, it is confirmed that the principle on the waist belt is most closely related to stick-slip and sprag-slip among various vibration characteristics. Stick-slip is expressed by energy accumulation and divergence due to difference in static and dynamic friction coefficient. Sprag-slip define instability of geometric structure due to angle of lips on the belt. In this paper, the physical model and the energy equation are established for the above two phenomena. Stick-slip can be solved by decreasing the difference of the static and dynamic friction coefficient. Sprag-slip is caused by the ratio of compressive and shear stiffness of the lips. The belt uses flocking to ensure durability, not coating.
Technical Paper

The Root Cause Analysis of Steel Fuel Tank Cracking at a Fatigue Point and Test Method Development of Durability

2017-03-28
2017-01-0393
Fuel tank in vehicle must hold the fuel in a stable way under any driving condition. However, the fuel tank might not conserve the fuel firmly in case a crack emerged while the fuel tank is exposed to different driving condition. Basically, when the engine is in purging at a normal ambient temperature before fuel boiling, the pressure inside the fuel tank decreases. However, the pressure inside a fuel tank increases while a vehicle is driven at extreme hot ambient temperature as fuel is boiling. This repetitive pressure change in the fuel tank comes with fuel tank’s physical expansion and shrink, which would cause a damage to the fuel tank. The main purpose of this research is to investigate the root cause of why fuel tank cracks at a fatigue point. We also aim to set up the method of how to test durability of the fuel tank in association with the pressure inside the tank.
Technical Paper

Bio-Based Composites and Their Applications for Auto Interior Parts

2016-04-05
2016-01-0512
Polylactide (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and sugar beets, has attracted much attention for automotive parts application. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the PLA composites including stereocomplexed with L- and D-PLA, we developed the unit processes such as fermentation, separation, lactide conversion, and polymerization. We investigated D-lactic acid fermentation with a view to obtaining the strains capable of producing D-lactic acid, and through catalyst screening test for polycondensation and depolymerization reactions, we got a new method which shortens the whole reaction time of lactide synthesis step. Poly(d-lactide) is obtained from the ring-opening polymerization of d-lactide. Also we investigated several catalysts and polymerization conditions.
Technical Paper

The Effect of Tempering on Mechanical and Fatigue Properties in Gas-Carburized Cr-Mo Gear Steel

1997-02-24
970709
The effects of tempering on carburized Cr-Mo gear steel were investigated through mechanical and fatigue tests. Specimens were carburized at 900°C for 180 minutes, and then oil quenched at 150°C for 10 minutes of holding time and cooled to room temperature. The subsequent tempering process was performed to 160°C for 90 minutes. Surface hardness and residual compressive stress were decreased by tempering treatment, whereas tensile strength, yield strength and impact energy were increased. Bending fatigue endurance limits for both tempered and untempered specimens were same as 779MPa. The strength of roller contact fatigue is also not greatly influenced by tempering treatment. Thermal distortion for carburized transfer driven gear before and after tempering exhibited a similar distribution. Microstructural changes during tempering were also discussed.
Technical Paper

Effect of Normalized Microstructure in Alloy Steel on the Performance of Planetary Gear Set of Automatic Transmission

1997-02-24
970972
The banded microstructure of pearlite and ferrite in normalized alloy steel is susceptible to thermal distortion during carburizing process due to its unidirectional orientation parallel to rolling direction. The planetary gears with material of banded microstructure have been experienced in high thermal distortion during carburizing and quenching process and result in uneven surface hardness and effective case depth at the inside of pinion gear after honing. These defects played failure initiation site roles in durability test during development of new automatic transmission. The galling between the contacting components in severe lubricating system was the main failure mechanism. Double normalizing at 920 °C was designed to resolve the banded microstructure of normalized alloy steel. The microstructure and grain size of the double heated steel became equiaxed and fine due to homogenizing and recrystallization through double heat treatment.
X