Refine Your Search

Topic

Author

Search Results

Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

A Study on Overcoming Unavailable Backward Driving and a New Fail-Safe Strategy for R-Gearless (P)HEV System

2024-04-09
2024-01-2170
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study.
Technical Paper

Development and optimization of jet impingement on dimpled plate for maximizing cooling performance of an inverter

2024-04-09
2024-01-2216
A need to develop a cooling method with high cooling performance like jet impingement is increased as high power of an inverter is required. Jet Impingement on the dimpled plate would increase thermal performance than that of flat plate. Many previous researchers have dealt with the multi jet impingement on flat plate and some results of the study on dimpled plate evaluate the effect on heat transfer coefficients on several limited cases, making it difficult to apply them to inverter designs. Therefore, in this paper, heat transfer performance, pressure drop, and robustness at micro-scale of jet impingement on the dimpled plate were investigated in detail and the correlations of each performance were proposed. Finally, the optimal design was presented. The cooling performance was influenced by the jet array and the effect of depth and width of the dimples.
Technical Paper

A Study on the Improvement of Driver's Inconvenience to Ensure Driving Stability in Bad Weather Conditions

2023-04-11
2023-01-0651
Bad weather conditions such as torrential rain, heavy snow, and thick fog frequently occur worldwide. Vehicle accidents in such bad weather conditions account for a significant portion of all vehicle accidents, and the level of damage is relatively severe compared to other accidents that occur in clear weather. This paper analyzes the driver's driving stability in bad weather conditions, which has such a significant meaning, in various ways through experiments on the inconvenience experienced by the driver. In this study, three levels of bad weather conditions were implemented in a driving simulator environment to evaluate driver inconvenience for six activities. Through driving experiment, quantitative bio-signals and vehicle signals were analyzed in each weather condition. The SD survey was used to assess the driver's inconvenience level for activities performed while driving and analyze the ranking of inconvenience.
Technical Paper

Driver Mental Stress in Response to Thermal Stress Change during Highway Driving

2023-04-11
2023-01-0146
Monitoring driver thermal stress is an integral step for developing an automated climate control function. In this experimental study, various physiological measures for driver’s thermal stress were tracked while intentionally by altering thermal conditions of the seat with a seat air conditioning system (ACS) in summer and a seat heating system (HS) in winter. It was aimed to determine reliable physiological measures for identifying the changes in thermal status induced by the two seat climate control systems. In the first experiment, twenty experienced drivers drove a comfortable sedan for 60 minutes on a real highway while varying the intensity of the seat ACS every 10 minutes to incur ‘hot’ – ‘cool’ – ‘hot’ – ‘cool’ thermal stress. In the second experiment, a new group of eighteen drivers drove the same highway for 30 minutes while increasing the intensity of seat HS to incur ‘cold’ to ‘warm’ thermal stress.
Technical Paper

Development of the Frontal Crash Performance of Vehicle by Simplified Crash Model

2022-03-29
2022-01-0871
This study presents a design methodology to predict the crash behavior of mid-size sedan with a simplified crash model. Without detailed conventional finite element, the simplified crash model can be adopted in the early stage of the vehicle design. Designing vehicle structure to satisfy crash performance target is highly complex problem in the early design stage, because of the nonlinear mechanical behavior, high number of degrees-of-freedom, lack of information and boundary conditions changing over the following development process. In this study, the front structure of the vehicle is divided into load-carrying members and the rigid element through the analysis of load-carrying mechanism, and its physical property (force-displacement relation) is parameterized as the property of the non-linear discrete beam element of the LS-DYNA. The effectiveness of the proposed research is shown by the example of the mid-size sedan.
Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

2020-09-30
2020-01-1535
The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. This paper illustrates a comparative conceptual study on windshield actuation for the active control of wind noise in a passenger car. Making use of an experimental modal analysis of the windshield installed in a medium-sized vehicle, a reduced order numerical simulation model is derived.
Technical Paper

Development, System Integration and Experimental Investigation of an Active HVAC Noise Control System for a Passenger Car

2020-09-30
2020-01-1538
Current developments in the automotive industry such as electrification and consistent lightweight construction increasingly enable the application of active control systems for the further reduction of noise in vehicles. As different stochastic noise sources such as rolling and wind noise as well as noise radiated by the ventilation system are becoming more noticeable and as passive measures for NVH optimization tend to be heavy and construction-space intensive, current research activities focus on active reduction of noise caused by the latter mentioned sources. This paper illustrates the development, implementation and experimental investigation of an active noise control system integrated into the ventilation duct system of a passenger car.
Technical Paper

Eco-Vehicle Battery System Big-Data Analysis and Fault Mode and Fault Tree Analysis (FTA) Related Robust System Development

2020-04-14
2020-01-0447
High-voltage battery system plays a critical role in eco-friendly vehicles due to its effect on the cost and the electric driving range of eco-friendly vehicles. In order to secure the customer pool and the competitiveness of eco-vehicle technology, vehicle electrification requires lowering the battery cost and satisfying the customer needs when driving the vehicles in the real roads, for example, maximizing powers for fun drive, increasing battery capacities for achieving appropriate trip distances, etc. Because these vehicle specifications have a critical effect on the high-voltage battery specification, the key technology of the vehicle electrification is the appropriate decision on the specification of the high-voltage battery system, such as battery capacity and power. These factors affect the size of battery system and vehicle under floor design and also the profitability of the eco-friendly vehicles.
Technical Paper

The Development of Gear Tooth Micro Geometry Analysis Method for the Transmission Gear Noise Robustness

2019-03-25
2019-01-1414
Transmission error has been well known as the main source of excitation about transmission gear whine noise. To minimize transmission error in the gear system, various analysis methods have been studied and applied for long time. Many researchers were focused on gear micro geometry to achieve the low level of transmission error. But, if the gear is misaligned by several factors such as clearance and manufacturing tolerance error, then the gear noise can rapidly and unexpectedly be increased. To overcome this problem, this new analysis method has been developed and introduced. A transmission system simulation model was constructed, which considers various factors of transmission components such as clearance, stiffness and so on. The deformation and vibration characteristics of finite element models were validated by making comparison with frequency response function experiment.
Technical Paper

The Effects of Suspension Component Stiffness on the Road Noise: A Sensitivity Study and Optimization

2018-06-13
2018-01-1510
This paper investigates the sensitivity of stiffness of front and rear suspension systems on the structure-borne road noise inside a vehicle cabin. A flexible multi-body dynamics based approach is used to simulate the structural dynamics of suspension systems including rubber bushings, suspension arms, a subframe and a twist beam. This approach can accurately predict the force transfer to the trimmed body at each suspension mounting point up to a frequency range of 0 to 300 Hz, which is validated against a force measurement test using a suspension test rig. Predicted forces at each mounting point are converted to road noise inside the cabin by multiplying it with experimentally obtained noise transfer functions. All of the suspension components are modeled as flexible bodies using Craig-Bampton component mode synthesis method.
Technical Paper

Development of Mass Producible ANC System for Broad-Band Road Noise

2018-06-13
2018-01-1561
The mass producible broad-band ANC system for road noise is developed with fully digital control system. For this configuration, installation packages are intensively considered by minimizing size of the controller, simplifying wiring system and implementing virtual microphone techniques. Virtual microphone technique enables error microphone to be installed in remote position of driver’s ear, and therefore, increases installation degree of freedom significantly. To enhance noise control performance with the minimum latency, filter design of FxLMS algorithm is optimized while additional audio compensation techniques are applied to maintain audio performance of amplifier. The present ANC system is equipped to HMC (Hyundai Motor Company) new release of hydrogen driven vehicle, which is introduced in the technology promotion event in Pyeongchang Olympic 2018.
Technical Paper

A Study on Front End Auxiliary Drive(FEAD) System of 48V Mild Hybrid Engine

2018-04-03
2018-01-0414
48V mild hybrid engine is one of major eco-friendly technology for global CO2 reduction policy. The 48V mild hybrid engine enables to operate torque boost, recuperation and ISG status by MHSG(Mild Hybrid Starter and Generator). The FEAD(Front End Auxiliary Drive) system is a very important role to transfer MHSG power to crankshaft at the mild hybrid engine. The conventional FEAD configuration is relatively simple because it transfers power from crankshaft to auxiliary drive components in one direction. But the FEAD configuration of 48V mild hybrid engine is not simple due to bidirectional power transmission between crankshaft and MHSG. For instance, in case of torque boost mode, the tight side of auxiliary belt is entry span of MHSG. On the contrary, the tight side of auxiliary belt is exit span of MHSG at recuperation mode.
Technical Paper

A Development of Fuel Saving Driving Technique for Parallel HEV

2018-04-03
2018-01-1006
This paper examines the effect of pulse-and-glide (PnG) driving strategies on the fuel efficiency when applied on parallel HEVs. Several PnG strategies are proposed, and these include the electrical, mechanical, and combined PnG strategies. The electrical PnG strategy denotes the hybrid powertrain control tactics in which the battery is charged or discharged according to the power demanded while maintaining the constant vehicle speed. On the other hand, the mechanical PnG strategy denotes the powertrain control tactics in which the vehicle accelerates or decelerates according to the power load while minimizing the battery usage. The combined PnG strategy involves both electrical and mechanical strategies to find a balanced point in between them. Here, a tradeoff relationship between the fuel efficiency and the vehicle drivability related to the tracking performance of the desired target speed is revealed.
Technical Paper

Development of Crash Performance of the Front Bumper System by Adopting Target Cascading Scheme

2018-04-03
2018-01-1054
A practical application of the Target Cascading scheme for the development of the front bumper system of a passenger car is investigated in this paper. The Target cascading in the crash performance of vehicle developments requires a systematic approach, propagating from the desired vehicle-level performance target to appropriate specifications in a system- and/or component-level. To define the values of design specification in the front bumper system, three physical variables are derived by analyzing the vehicle-level performance of the frontal impact under the high-speed (56kph NCAP frontal impact) and the low-speed (15kph RCAR structural test) crash conditions. To ensure the sequential deformation in the high-speed frontal impact and to minimize the damage of the structural member in the low-speed crash, the maximum collapse load of a crash box should be smaller than the collapse load of a front side member.
Technical Paper

Optimization of Bushing Stiffness Using Numerical Approximation Model to Improve Automotive NVH Performance

2017-06-05
2017-01-1804
An efficient method to determine optimal bushing stiffness for improving noise and vibration of passenger cars is developed. In general, a passenger vehicle includes various bushings to connect body and chassis systems. These bushings control forces transferred between the systems. Noise and vibration of a vehicle are mainly caused by the forces from powertrain (engine and transmission) and road excitation. If bushings transfer less force to the body, levels of noise and vibration will be decreased. In order to manage the forces, bushing stiffness plays an important role. Therefore, it is required to properly design bushing stiffness when developing passenger vehicles. In the development process of a vehicle, bushing stiffness is decided in the early stage (before the test of an actual vehicle) and it is not validated until the test is performed.
Technical Paper

Evaluation of Biofidelity of the Human Body Model Morphed to Female with Abdominal Obesity in Frontal Crashes

2017-03-28
2017-01-1429
This paper aims to evaluate the biofidelity of a human body FE model with abdominal obesity in terms of submarining behavior prediction, during a frontal crash event. In our previous study, a subject-specific FE model scaled from the 50th percentile Global Human Body Model Consortium (GHBMC) human model to the average physique of three female post mortem human subjects (PMHSs) with abdominal obesity was developed and tested its biofidelity under lap belt loading conditions ([1]). In this study frontal crash sled simulations of the scaled human model have been performed, and the biofidelity of the model has been evaluated. Crash conditions were given from the previous study ([2]), and included five low-speed and three high-speed sled tests with and without anti-submarining device.
Journal Article

A Tailgate(Trunk) Control System Based on Acoustic Patterns

2017-03-28
2017-01-1634
When customers use a tailgate (or trunk), some systems such as power tailgate and smart tailgate have been introduced and implemented for improving convenience. However, they still have some problems in some use cases. Some people have to search for the outside button to open the tailgate, or they should take out the key and push a button. In some cases, they should move their leg or wait a few seconds which makes some people feel that it is a long time. In addition, they have to push the small button which is located on the inner trim in order to close the tailgate. This paper proposes a new tailgate control technology and systems based on acoustic patterns in order to solve some inconvenience. An acoustic user interaction (AUI) is a technology which responds to human’s rubbing and tapping on a specific part analyzing the acoustic patterns. The AUI has been recently spotlighted in the automotive industry as well as home appliances, mobile devices, musical instruments, etc.
Technical Paper

A Development of the New Mechanism for Preventing Door Opening in Side Impact Test

2017-03-28
2017-01-1459
During a new vehicle development process, there are several requirements for side impact test that should be confirmed. One of the requirements is the prevention of door opening during side impact test. Even though there are many causes for door opening problem, this study deals with inertia effect by impact energy. Until now, there have been two classical methods to prevent car door from opening in side impact. One is the increment of the inertia resistance by increasing the mass of the balance weight and the spring force. The other is the application of the blocking lever. Unfortunately, in spite of our efforts, the door opening problem occurs occasionally. Therefore, to improve the problem fundamentally, this paper proposes a new blocking lever mechanism that work similar to ball-point pen structure. The proposed mechanism fixes the blocking lever when the opening directional inertia force is applied to the door outside handle during side crash.
X