Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Bushing Stiffness Optimization Method for NVH Improvement Using Blocked Force and Energy-Based Index in Suspension System

2024-06-12
2024-01-2921
Reductions in powertrain noise have led to an increased proportion of road noise, prompting various studies aimed at mitigating it. Road excitation primarily traverses through the vehicle suspension system, necessitating careful optimization of the characteristics of bushings at connection points. However, optimizing at the vehicle assembly stage is both time-consuming and costly. Therefore, it is essential to proceed with optimization at the subsystem level using appropriate objective functions. In this study, the blocked force and energy-based index derived from complex power were used to optimize the NVH performance. Calculating the complex power in each bushing enables computing the power flow, thereby providing a basis for evaluating the NVH performance. Through stiffness injection, the frequency response functions (FRF) of the system can be predicted according to arbitrary changes in the bushing stiffness.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

AI-Based Optimization Method of Motor Design Parameters for Enhanced NVH Performance in Electric Vehicles

2024-06-12
2024-01-2927
The high-frequency whining noise produced by motors in modern electric vehicles causes a significant issue, leading to annoyance among passengers. This noise becomes even more noticeable due to the quiet nature of electric vehicles, which lack other noises to mask the high-frequency whining noise. To improve the noise caused by motors, it is essential to optimize various motor design parameters. However, this task requires expert knowledge and a considerable time investment. In this study, we explored the application of artificial intelligence to optimize the NVH performance of motors during the design phase. Firstly, we selected and modeled three benchmark motor types using Motor-CAD. Machine learning models were trained using Design of Experiment methods to simulate batch runs of Motor-CAD inputs and outputs.
Technical Paper

Definition and Application of a Target Cascading Process on a Fully Trimmed Body, from Vehicle Objectives to Component Objectives

2024-06-12
2024-01-2916
Finite element (FE) based simulations for fully trimmed bodies are a key tool in the automotive industry to predict and understand the Noise, Vibration and Harshness (NVH) behavior of a complete car. While structural and acoustic transfer functions are nowadays straight-forward to obtain from such models, the comprehensive understanding of the intrinsic behavior of the complete car is more complex to achieve, in particular when it comes to the contribution of each sub-part to the global response. This paper proposes a complete target cascading process, which first assesses which sub-part of the car is the most contributing to the interior noise, then decomposes the total structure-borne acoustic transfer function into several intermediate transfer functions, allowing to better understand the effect of local design changes.
Technical Paper

Active Vibration Control of Road Noise Path Using Piezoelectric Stack Actuators and Filtered-X LMS Algorithm for Electric Vehicle Applications

2024-06-12
2024-01-2953
This paper presents the novel active vibration control (AVC) system that controls vehicle body vibration to reduce the structural borne road noise. As a result of vehicle noise testing in an electric vehicle, the predominant frequency of vehicle body vibration that worsens interior noise is in the range of 150-250Hz. Such vibration in that frequency range, commonly masked in engine vibrations, are hard to neglect for electric vehicles. The vibration source of that frequency is the resonance of tire cavity mode. Resonator or absorption material has been applied inside the tire for the control of cavity noise as a passive method. They require an increment of weight and cost. Therefore, a novel method is necessary. The vibration amplified by resonance of cavity mode is transferred to the vehicle body throughout the suspension system. To reduce the vibration, AVC system is applied to the suspension mount.
Technical Paper

Development of Noise Diagnosis and Prediction Technology for Column-Based Electric Power Steering Systems Using Vehicle Controller Area Network Data

2024-04-09
2024-01-2897
The steering system is a critical component for controlling a vehicle's direction. In the context of Advanced Driver Assistance Systems (ADAS) and autonomous vehicles, where drivers may not always be actively holding the steering wheel, early detection of precursor noise signals is essential to prevent serious accidents resulting from the loss of steering system functionality. It is therefore imperative to develop a device capable of early detection and notification of steering system malfunctions. Therefore, the current study aimed to quantify the noise levels generated within the Column-based Electric Power Steering (C-EPS) system of a D-segment sedan. To this end, we measured the uniaxial acceleration in nine noise-generating areas while simultaneously collecting data from three Controller Area Network (CAN) sources that are directly related to steering operation.
Technical Paper

Optimization of Structural Rigidity of the Door Module Mounting part

2024-04-09
2024-01-2223
The recent surge in platforms like YouTube has facilitated greater access to information for consumers, and vehicles are no exception, so consumers are increasingly demanding of the quality of their vehicles. By the way, the door is composed of glass, moldings, and other parts that consumers can touch directly, and because it is a moving part, many quality issues arise. In particular, the door panel is assembled from all of the above-mentioned parts and thereby necessitates a robust structure. Therefore, this study focuses on the structural stiffness of the door inner panel module mounting area because the door module is closely to the glass raising and lowering, which is intrinsically linked to various quality issues.
Technical Paper

Development of a Light Weight Luggage Board Using the Sandwich Molding Method

2024-04-09
2024-01-2222
A crucial component utilized in the trunk space is the luggage board. Positioned at the bottom of the trunk, the trunk board separates the vehicle body from the interior and supports for luggage. The luggage board serves multiple functions, including load-bearing stiffness for luggage, partition structure functionality, noise insulation, and thermal insulation. There is a need for a competitive new luggage board manufacturing method to meet the increasing demand for luggage boards in response to the changing market environment. To address this, the "integrated sandwich molding method" is required. The integrated sandwich molding method utilizes three key methodologies: grouping processes to integrate similar functions, analyzing materials to replace them with suitable alternatives, and overcoming any lacking functionality through integrated design structures. This paper presents a methodology for developing the integrated sandwich molding method.
Technical Paper

A Study on Reliability-Based Maximum Service Temperature Estimation of Plastic Automotive Parts

2024-04-09
2024-01-2421
Recently, the environmental temperature of vehicles is changing due to the electrification of vehicles and improved internal combustion engine system to reduce carbon emissions. However, mechanical properties of plastic materials change very sensitively to environmental temperature changes, and mechanical properties decrease when exposed to high temperatures. Therefore, it is important to estimate lifespan estimation of plastic parts according to temperature changes. In this paper, reliability analysis process to estimate the maximum service temperature of plastic parts was developed using aging data of material properties, environmental condition data of automotive parts, and field driving condition data. Changes in the mechanical properties of plastic materials such as glass fiber reinforced polyamide materials were tested. The environmental exposure temperature of the vehicle and parts was measured, and the general driving pattern of the vehicle was analyzed.
Technical Paper

Development and Simulation Validation of a Wheel/Tire Selective-Matching Algorithm Considering an Error Function of Wheel Runout Measuring Equipment

2024-04-09
2024-01-2651
In this study, a novel selective matching logic for a wheel/tire is proposed, to decrease the vehicle driving vibration caused by wheel/tire non-uniformity. The new logic was validated through matching simulation/in-line matching evaluation. A theoretical radial force variation model was established by considering the theoretical model of the existing references and the wheel/tire assembly mechanism. The model was validated with ZF’s high-speed uniformity equipment, which is standard in the tire industry. The validity of the new matching logic was verified through matching simulation and mass production in-line evaluation. In conclusion, the novel logic presented herein was demonstrated to effectively decrease the radial force variation caused by the wheel/tire.
Technical Paper

Engine Crank Stop Position Control to Reduce Starting Vibration of a Parallel Hybrid Vehicle

2024-04-09
2024-01-2784
Engine off control is conducted on parallel hybrid vehicles in order to reduce fuel consumption. It is efficient in terms of fuel economy, however, noise and vibration is generated on engine cranking and transferred through engine mount on every mode transition from EV to HEV. Engine crank position control has been studied in this paper in order to reduce vibration generated when next cranking starts. System modeling of an architecture composed of an engine, P1 and P2 motors has been conducted. According to the prior studies, there exists correlation between crank vibration level and the crank angle. Thus a method to locate pistons on a specific crank angle which results in a local minimum of vibration magnitude could be considered. The P1 motor facilitates this crank position control when engine turns off, for its location directly mounted on a crankshaft allows the system model to obtain more precise crank position estimation and improved linearity in torque control as well.
Technical Paper

Development of an Automated CAD Database and Application on Aluminum Wheel

2024-04-09
2024-01-2724
As data science technologies are being widely applied on various industries, the importance of data itself increased. A typical manufacturer company has a vast data set of products as 2D&3D drawing formats, but a common problem was that building a database from the 2D&3D drawings costs much, and it is hard to update the database after it once built. Also, it is high-cost job when the new factor researched and necessary to investigate the new factors on previously fixed or uploaded drawings. As new products are developed with time, these problems are getting more difficult. In this paper, an automated database building method using CATIA introduced and future probabilities are suggested. An aluminum wheel part was used as an example. An automated logic used CATIA V5’s VBA functions and was handled by python programming language.
Technical Paper

Development of Rumble Noise Analysis Method for Electric Powertrain

2023-04-11
2023-01-0459
In electric-powertrains, noise and vibration can be generated by components such as gears and motors. Often a noise phenomenon known as rumble or droning noise can occur due to low shaft order excitation at the spline. In this study, we identified the excitation source for spline induced rumble noise and developed a novel analysis method. First, a detailed spline model, believed to be the key factor for rumble noise, has been developed and verified by comparison with Finite Element Method(FEM) analysis. In order to identify an excitation source, a typical electric-powertrain assembly model including the developed spline model was constructed and simulated. Results according to changes of key factors including spline pitch errors and shaft alignment errors were analyzed. Spline radial force has been identified as an excitation source of spline induced rumble noise. This was verified through comparison with the forced vibration analysis result and time domain analysis result.
Technical Paper

Progressive Meta-Model Based Design Optimization for Lithium-ion Battery Pack to Improve Cell Cycle Life

2023-04-11
2023-01-0512
Lithium-ion battery has advantages of high energy density and cost effectiveness than other types of batteries. However due to the low mechanical stability, their performance is strongly influenced by environmental conditions. Especially, external pressure on a cell surface is a crucial factor because an appropriate force can improve battery cycle life, but excessive force may cause structural failure. In addition, battery pack is composed of various components so that uncertainties in dimension and material properties of each component can cause a wide variance in initial pressure. Therefore, it is important to optimize structural design of battery pack to ensure initial pressure in an effective range. In this paper, target stiffness of module structure was determined based on cell level cycle life test, then structural design has been optimized for weight reduction. Cell cycling tests were performed under different stiffness conditions and analyzed with regression model.
Technical Paper

Optimization of Body D-Pillar Ring Structure

2023-04-11
2023-01-0604
The body stiffness plays a key role in vehicle performance, such as noise and vibration, ride and handling, durability and so on. In particular, a body D-pillar ring structure is the most sensitive affecting the body stiffness on vehicle with tail gate. Therefore, since D-pillar body ring structure for high stiffness and lightweight is required, an optimized design methodology that simultaneously satisfies the requirements was studied. It focused on a methodology that body engineering designers can optimize design parameters easily and quickly by themselves in the preceding stages of vehicle’s styling distribution and design conceptual planning. First, it is important to establish the body stiffness design strategy by predicting the body stiffness with the vehicle’s styling at early design stage. The methodology to predict body stiffness with the styling and body dimension specification parameters was introduced.
Technical Paper

Full Aluminum Body Design Considering Part-Specific Requirements

2023-04-11
2023-01-0603
In the era of electric vehicles(EVs), the need for weight reduction of the vehicle body is increasing in order to maximize the driving distance of the EV. Accordingly, there is an increasing need for research to efficiently apply lightweight materials, such as aluminum and CFRP, to the EV body parts. In this study, design methodologies and optimization measures to increase lightweight efficiency when applying lightweight materials to EVs will be discussed. Based on theoretical basis and basic performance of each part of the EV, the “Material Substitution Method” of replacing existing parts of a steel body with aluminum materials will be defined, and the optimal design process on how to overcome performance trade-off caused by material characteristics will be addressed. In applying the “Material Substitution Method” to the actual EV body design process, it was possible to convert 93% of the components from steel to aluminum and reduce the overall weight of the body by 23%.
Technical Paper

Next Generation Seat Ventilation System for Genesis EV

2023-04-11
2023-01-0911
The shift towards electric vehicles is gaining pace to address carbon neutrality and environmental concerns. New technologies are being developed to cater to the unique features of EVs, such as the low indoor noise at low speeds, which require a low-noise ventilation system. A new dual-blower type system was developed to solve the problem of seat-bottom package caused by battery placement in the vehicle. This system uses two blowers, one for the cushion and one for the back, and reduces RPM to lower high-frequency noise. A new solution was introduced for temperature drop performance in the ventilation system. An integrated controller was also developed to control the seat warmer and ventilation system, with a smart control function added to respond to vehicle speed and ventilation time based on customer usage. As a result, this new ventilation system improves air volume, reduces noise, improves foot space, and reduces the number of parts compared to the previous system.
Journal Article

A Study on Flexible Transparent Electrode Materials for Touch Sensor

2023-04-11
2023-01-0074
As the AVN display in the car interior becomes larger and located above the center fascia, the driver's visual visibility is becoming important. In addition, since an expensive touch sensor is installed, a transparent electrode cost reduction technology for a display touch sensor that can replace an indium material, which is an expensive rare metal, is required. In this paper, we developed new transparent electrode materials and manufacturing methods for the touch sensor film which light reflectance is low and flexible without a separate low-reflection multi-layer, so that the design freedom is high and the material cost is low. By optimizing the amount of fluorine doping ratio in tin oxide, excellent electrical conductivity and high optical transmittance are secured, and the surface reflectance is reduced by adjusting the diameter and length of the silver nanowire. As a result, it was shown that the AVN display image and font readability was improved.
Technical Paper

Enhancing Meta Model of the Brake Pad Friction Coefficient Using the Explainable Machine Learning

2022-09-19
2022-01-1175
Recently, increasing system complexity and various customer demands result in the need for highly efficient vehicle development processes. Once the brake torque is predicted accurately during the driving scenario in the earlier stage, it will be able to prevent the changing the vehicle or brake system design to satisfy the legal regulation and customer requirement. As brake torque performance target allocate brake pad friction coefficient level and characteristic, the accurate friction coefficient prediction should be preceded for accurate prediction for brake torque. Generally, the friction coefficient of the brake pad is known to vary nonlinearly depending on the physical properties of the disc and the pad, as well as the brake disc rotational speed, the disc temperature, and the hydraulic pressure. Furthermore, it varies depending on the driving scenario even when other conditions are the same. Therefore, it is necessary to apply new methods to solve these challenges.
X