Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Diagnosis and Prognosis of Chassis Systems in Autonomous Driving Conditions

2023-04-11
2023-01-0741
Expanding various future mobilities such as purpose built vehicle (PBV), urban air mobility (UAM), and robo-taxi, the application of autonomous driving system (ADS) technology is also spreading. The main point of ADS is to ensure safety by monitoring vehicle anomalies to prevent functional failure or accident. In this study, a model-based diagnosis and prognosis process was established using degradation data generated during autonomous driving simulation. A vehicle model was designed using Modelica/Dymola, and autonomous driving simulation was performed by integrating the lane keeping assistant (LKA) system with the vehicle model using Matlab/Simulink. Degradation data for the 3 components (a shock absorber damper, a suspension bush, and a tire) of the chassis system were input into the integrated simulation model. The degradation behavior was monitored with K-nearest neighbor (K-NN) and Gaussian mixture model (GMM).
Technical Paper

Transient Nonlinear Full-Vehicle Vibration Analysis

2017-03-28
2017-01-1553
This paper presents a transient vibration analysis of a nonlinear full-vehicle. The full-vehicle model consists of a powertrain, a trimmed body, a drive line, and front and rear suspensions with tires. It is driven by combustion forces and runs on a road surface. By performing time-domain simulation, it is possible to capture nonlinear behavior of a vehicle such as preload due to gravitational force, large deformation, and material nonlinearity which cannot be properly treated in the conventional steady state analysis. In constructing a full-vehicle, validation process is essential. Validation process is applied with respect to the assembling sequence. The validation starts with component levels such as tires, springs, shock absorbers, and a powertrain, and then the full-vehicle model is constructed. Model validation is done in two aspects; one is model accuracy and the other is model efficiency.
Technical Paper

Optimal Rear Suspension Design for the Improvement of Ride Comfort and Suspension Noise

2012-04-16
2012-01-0975
The purpose of this paper is to identify and reduce a knocking noise from a rear suspension. First, the characteristics of a knocking noise are analyzed experimentally in the frequency domain. It was found that the knocking noise of a passenger room and vibration at a lower arm, a subframe and a floor are strongly correlated. Second, the knocking noise sensitivity is strongly dependent on suspension dynamics characteristics. Moreover, the improvement of ride comfort and noise was achieved simultaneously based on simulation analysis, principle vehicle testing. A design parameter study shows that the trailing arm bush stiffness, shock absorber bump/rebound damping characteristics, floor stiffness and shock absorber insulator bushing are one of the most sensitive parameter to affect the suspension knocking noise. Finally, this paper shows how the suspension knocking noise and ride comfort can be improved considering handling performance.
Technical Paper

Development of CAE Methodology for Rollover Sensing Algorithm

2009-04-20
2009-01-0828
The Rollover CAE model is developed for Rollover sensing algorithm in this paper. By using suggested CAE model, it is possible to make sensing data of rollover test matrix and these data can be used for calibration of rollover sensing algorithm. Developed vehicle model consists of three parts: a vehicle parts, an occupant parts and a ground boundary conditions. The vehicle parts include detailed suspension model and FE structure model. The occupant parts include ATD (anthropomorphic test device) male dummy and restraint systems: Curtain Airbag and Seat-Belt. We find analytical value of the suspension model through correlation with vehicle drop test, simulate this model under the conditions of untripped (Embankment, Corkscrew) and tripped (Curb-Trip, Soil-Trip) rollover scenarios. Comparison of the simulation and experimental data shows that the simulation results of suggested CAE model can be substituted for the experimental ones in calibration of rollover sensing algorithm.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

A Flexible Multi-Body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

2007-04-16
2007-01-0852
This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of 1∼2mm/sec and frequency of 132mm. First, the simulation is conducted with the same condition as the test.
Technical Paper

Prediction of Suspension Fundamental Mode Frequency with Extraction of Dynamic Properties of Automotive Shock Absorbers and Tire

2001-03-05
2001-01-0498
The automotive shock absorber has various functions in car performance. Particularly, it is a dominant tuning parameter to get good primary and secondary ride characteristics within 1-35Hz ranges in car development. Thus, understanding of characteristics of shock absorber in this frequency range is indispensable to both test and analysis engineers for an effective and systematic approach. In this study, tire is also investigated from the same point of view. Frequency dependent stiffness and damping coefficient are extracted by discrete sine swept test under constant velocity of 25, 50, 100mm/sec which represent typical road surface conditions[1]. The responses are analyzed on frequency domain and the basic theoretical background for this approach is introduced.
X