Refine Your Search

Topic

Author

Search Results

Technical Paper

A Preliminary Study on the Evaporative Cooling System for FCEV

2024-04-09
2024-01-2406
The existing FCEV have been developed with only a few vehicle models. With the diversification of both passenger and commercial FCEV lineups, as well as the increasing demand for vehicle trailer towing, there is a growing need for high-capacity fuel cell stacks to be applied in vehicles. However, at the current level, there are limitations and issues that arise, such as insufficient power output and reduced driving speed. As a results, the importance of thermal energy management has been increasing along with the increase in required power. Traditional cooling performance enhancement methods have mainly focused on developing increased hardware specifications, but even this approach has reached its limitation due to package, cost and weight problem. Therefore, it is essential to develop a new cooling system to solve the increases in heat dissipation.
Technical Paper

Analysis of Aerodynamic Characteristics of Fan-Type Wheels

2024-04-09
2024-01-2540
This research addresses the pressing need for reducing vehicle aerodynamic resistance, with a specific focus on mitigating wheel and tire resistance, which constitutes approximately 25% of the overall vehicle drag. While the prevailing method for reducing resistance in mass production development involves wheel opening reduction, it inadvertently increases wheel weight and has adverse effects on brake cooling performance. To overcome these challenges, novel complementary resistance reduction methods that can be employed in conjunction with an appropriate degree of wheel opening reduction are imperative. In this study, we introduce symmetrical wheels with a fan-like shape as a solution. The fan configuration influences the surrounding flow by either drawing it in or pushing it out, depending on the direction of rotation. Application of these fan-type wheels to a vehicle's wheels results in the redirection of flow inwards or outwards during high-speed driving due to wheel rotation.
Technical Paper

Progressive Meta-Model Based Design Optimization for Lithium-ion Battery Pack to Improve Cell Cycle Life

2023-04-11
2023-01-0512
Lithium-ion battery has advantages of high energy density and cost effectiveness than other types of batteries. However due to the low mechanical stability, their performance is strongly influenced by environmental conditions. Especially, external pressure on a cell surface is a crucial factor because an appropriate force can improve battery cycle life, but excessive force may cause structural failure. In addition, battery pack is composed of various components so that uncertainties in dimension and material properties of each component can cause a wide variance in initial pressure. Therefore, it is important to optimize structural design of battery pack to ensure initial pressure in an effective range. In this paper, target stiffness of module structure was determined based on cell level cycle life test, then structural design has been optimized for weight reduction. Cell cycling tests were performed under different stiffness conditions and analyzed with regression model.
Technical Paper

A Study on the Improvement of Driver's Inconvenience to Ensure Driving Stability in Bad Weather Conditions

2023-04-11
2023-01-0651
Bad weather conditions such as torrential rain, heavy snow, and thick fog frequently occur worldwide. Vehicle accidents in such bad weather conditions account for a significant portion of all vehicle accidents, and the level of damage is relatively severe compared to other accidents that occur in clear weather. This paper analyzes the driver's driving stability in bad weather conditions, which has such a significant meaning, in various ways through experiments on the inconvenience experienced by the driver. In this study, three levels of bad weather conditions were implemented in a driving simulator environment to evaluate driver inconvenience for six activities. Through driving experiment, quantitative bio-signals and vehicle signals were analyzed in each weather condition. The SD survey was used to assess the driver's inconvenience level for activities performed while driving and analyze the ranking of inconvenience.
Technical Paper

Next Generation Seat Ventilation System for Genesis EV

2023-04-11
2023-01-0911
The shift towards electric vehicles is gaining pace to address carbon neutrality and environmental concerns. New technologies are being developed to cater to the unique features of EVs, such as the low indoor noise at low speeds, which require a low-noise ventilation system. A new dual-blower type system was developed to solve the problem of seat-bottom package caused by battery placement in the vehicle. This system uses two blowers, one for the cushion and one for the back, and reduces RPM to lower high-frequency noise. A new solution was introduced for temperature drop performance in the ventilation system. An integrated controller was also developed to control the seat warmer and ventilation system, with a smart control function added to respond to vehicle speed and ventilation time based on customer usage. As a result, this new ventilation system improves air volume, reduces noise, improves foot space, and reduces the number of parts compared to the previous system.
Technical Paper

Driver Mental Stress in Response to Thermal Stress Change during Highway Driving

2023-04-11
2023-01-0146
Monitoring driver thermal stress is an integral step for developing an automated climate control function. In this experimental study, various physiological measures for driver’s thermal stress were tracked while intentionally by altering thermal conditions of the seat with a seat air conditioning system (ACS) in summer and a seat heating system (HS) in winter. It was aimed to determine reliable physiological measures for identifying the changes in thermal status induced by the two seat climate control systems. In the first experiment, twenty experienced drivers drove a comfortable sedan for 60 minutes on a real highway while varying the intensity of the seat ACS every 10 minutes to incur ‘hot’ – ‘cool’ – ‘hot’ – ‘cool’ thermal stress. In the second experiment, a new group of eighteen drivers drove the same highway for 30 minutes while increasing the intensity of seat HS to incur ‘cold’ to ‘warm’ thermal stress.
Technical Paper

A Study on the Sound Transmission Loss of Split HVAC for Electric Vehicles

2022-06-15
2022-01-0981
Generally, the HVAC system of a vehicle is composed of Blower unit assembly and Heater unit assembly, and is located on the driver’s side of the dash panel. However, electric vehicles have far fewer parts than conventional internal combustion engine vehicles, so electric vehicles have large space in the engine room. This allows HVAC, which occupies large volume in the interior side, to be pushed in the direction of the engine room altogether, or by placing a part inside the engine room to make a slim cockpit and expand the interior space. However, this new structure, called the Split HVAC System, is mounted through the dash, allowing noise to pass through relatively easily. Since this adversely affects the NVH of an electric vehicle, it needs to be developed in terms of noise transmission. Therefore, in this paper, a study was conducted to predict the sound transmission loss of Split HVAC through an analytical method.
Journal Article

On the Aerodynamics of the Notchback Open Cooling DrivAer: A Detailed Investigation of Wind Tunnel Data for Improved Correlation and Reference

2021-04-06
2021-01-0958
Since the introduction of the DrivAer in 2012 this model has become the standard generic aerodynamic benchmark and aerodynamic research model used by automotive OEMs, software vendors and researchers. In 2017, the relevance of the DrivAer has been furthered by the inclusion of a simplified engine bay. Whilst the DrivAer has become the popular standard, the availability of detailed wind tunnel test data, a key enabler for more sophisticated aerodynamic benchmarking and research, remains limited. This paper presents a comprehensive set of wind tunnel test data of the notchback version of the Ford Open Cooling DrivAer, including aerodynamic force measurements, detailed surface pressure measurements and flow field measurements at 3 cross-sections in the vicinity of the model. In addition, the paper will discuss the sensitivity of the experimental data to wind tunnel repeatability and facility-to-facility variations.
Technical Paper

Development of Surfactant-Free Anti-Fogging Coating for Automotive Headlamps

2019-03-25
2019-01-1439
Recently, the design of automotive headlamps has become diversified and complicated according to customer needs. Hence, structural complexity of the headlamps has also increased. Complex structure of the headlamps inevitably causes a disturbance in air circulation. For this reason, inadvertent micro-sized water droplets, called fogging, are condensed on the inner surface of headlamp lens due to temperature difference between the inner and outer lens surfaces. To circumvent fogging inside of the headlamp lens, an anti-fogging coating is indispensable. Conventionally, diverse surfactants have been adopted as substantial material for the anti-fogging coating. However, the usage of the surfactants causes undesirable side effect such as water mark arising from vapor condensation, which is an important issue that must be fully resolved. In this study, we developed an innovative anti-fogging coating material without using conventional surfactant.
Technical Paper

A Development of Fuel Saving Driving Technique for Parallel HEV

2018-04-03
2018-01-1006
This paper examines the effect of pulse-and-glide (PnG) driving strategies on the fuel efficiency when applied on parallel HEVs. Several PnG strategies are proposed, and these include the electrical, mechanical, and combined PnG strategies. The electrical PnG strategy denotes the hybrid powertrain control tactics in which the battery is charged or discharged according to the power demanded while maintaining the constant vehicle speed. On the other hand, the mechanical PnG strategy denotes the powertrain control tactics in which the vehicle accelerates or decelerates according to the power load while minimizing the battery usage. The combined PnG strategy involves both electrical and mechanical strategies to find a balanced point in between them. Here, a tradeoff relationship between the fuel efficiency and the vehicle drivability related to the tracking performance of the desired target speed is revealed.
Technical Paper

Development of Parallel and Direct Cooling System for EV/FCEV Inverter

2018-04-03
2018-01-0454
This paper presents the direct liquid-cooled power module with the circular pin fin which is the inverter parallel cooling system for high output EV/FCEV. The direct cooling system of a conventional inverter is designed to supply coolant along the direction in which the heating element such as Si-chip is disposed and discharge coolant to the opposite side. In case of the inverter, the higher the output is, the larger temperature difference between inlet and outlet becomes due to the heat exchange of the heat generation element, so that temperature difference depends on the position of Si-chip. Since lifetime is judged on the basis of maximum temperature of Si-chip, the inverter itself must be replaced or discarded due to durability of the inverter even though Si-chip can drive further. The simple way to solve this problem is to increase cooling flow rate, but this leads to excessive increase in pressure loss due to circular pin fin.
Technical Paper

Improvement of Tire Development Process Through Study of Tire Test Procedure and Vehicle Correlation

2018-04-03
2018-01-1337
The tire is the vital element in vehicle dynamics, as its contact patch transmits all forces and moments to the ground (accelerating, braking, cornering, rolling).Over the recent decades tire development for passenger cars has been continuously improved and optimized in order to achieve a good overall vehicle performance in R&H that is in balance with all other tire performances (Wear, Durability, NVH, RR, Miles). This general development process has to be suitable for various vehicle types from regular passenger cars over eco-friendly hybrid or electric vehicles to high performance sport cars. The balance between Ride and Handling performance is further adjusted to local customer preferences that are usually distinguished by markets (US, EU, Asia). The tire development process, which is embedded in the overall vehicle development, is usually realized in a mutual collaboration between OEM and tire supplier.
Journal Article

Development of Standardized Battery Pack for Next-Generation PHEVs in Considering the Effect of External Pressure on Lithium-Ion Pouch Cells

2018-04-03
2018-01-0439
The performance and marketability of eco-friendly vehicles highly depend on their high-voltage battery system. Lithium-ion pouch cells have advantages of high energy density and cost-effectiveness than other types of batteries. However, due to their low mechanical stability, their characteristics are strongly influenced by external conditions. Especially, external pressure on pouch cell is a crucial factor for the performance, life cycle, and structural safety of battery pack. Therefore, optimizing pressure level has been a critical consideration in designing battery pack structures for lithium-ion pouch cell. In this work, we developed an optimized structure of the battery module and pack to apply appropriate pressure on pouch cells. They also include a standardization strategy to meet the varied demand in capacity and power for automotive application.
Technical Paper

A Study of the Auxiliary Belt Drive System for Actual Fuel Saving

2017-03-28
2017-01-0898
The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Technical Paper

Microstructure and Tribological Behavior of CrN-Cu Nanocoatings Deposited by PVD Systems

2016-04-05
2016-01-0492
The present study focused on CrN-Cu nanocoatings composed of nano-meter grains with CrN, Cr and Cu functioning low-friction, anti-wear and heat resistance. The coatings were synthesized by hybrid PVD including metal arc source, magentron sputter source and ion-gun source. Although Cu has low hardness, the hardness of CrNCu is not declined because it was composed of below 20nm sized grains of CrN, Cr, and Cu. However, CrN-Cu had lower friction than CrN owing to Cu’s low shear strength. CrN-Cu films optimized using the Reaction Surface Method (RSM) showed the excellent tribological behavior and low coefficient of friction compared with DLC. The tribological properties of the Cr-Cu-N demonstrated superior wear resistance and low friction at normal and high temperature conditions. The CrN-Cu nanocoatings can be used for the downsizing automotive engines working at severe tribological conditions.
Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Technical Paper

Assessing Panel Noise Contribution of a Car Engine Using Particle Velocity Sensors

2015-06-15
2015-01-2248
In order to apply an effective noise reduction treatment determining the contribution of different engine components to the total sound perceived inside the cabin is important. Although accelerometer or laser based vibration tests are usually performed, the sound contributions are not always captured accurately with such approaches. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using microphones combined with particle velocity sensors while the engine remains mounted in the car [6]. Similar results were obtained as with a dismounted engine in an anechoic room. This paper focusses on the measurement of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener's position.
Technical Paper

Development of Si-DLC Coated Tappet for Improved Wear Resistance

2015-04-14
2015-01-0685
Most bucket type valvetrain engines use DLC coated tappet for low friction and fuel efficiency. However the requirements on coating robustness have been increased as the tribological environments have become more severe by use of low viscosity oil or higher engine output. In order to obtain higher coating efficiency and improved wear resistance, 5∼9 at.% Si doped DLC (Si-DLC) coated tappet has been developed using PACVD process. Thermal stability and wear resistance of Si-DLC were improved impressively than those of DLC, although mechanical properties such as hardness and adhesion were degradated. It seems that Si suppresses a graphitization of DLC and thin SixOy film on coating surface acts as a barrier to oxidation or flash heat.
Technical Paper

Analysis of Microorganism Causing Odor in an Air-Conditioning System

2015-04-14
2015-01-0354
This study has been conducted to analyze microbial diversity and its community by using a method of NGS(Next generation sequencing) technique that is not rely on cultivation for microbial community in an core evaporator causing odor of car air conditioner. The NGS without any cultivation method of cultivation, has been developed recently and widely. This method is able to research a microorganism that has not been cultivated. Differently with others, it can get a result that is closer to fact, also can acquire more base sequence with larger volume in relatively shorter time. According to bacteria population analysis of 23 samples, It can be known limited number of bacteria can inhabit in Evaporator core, due to small exposure between bacteria and evaporate, as well as its environmental characteristics. With the population analysis, only certain group of it is forming biofilm in proportion.
X