Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Innovative Virtual Evaluation Process for Outer Panel Stiffness Using Deep Learning Technology

2024-04-09
2024-01-2865
During the vehicle lifecycle, customers are able to directly perceive the outer panel stiffness of vehicles in various environmental conditions. The outer panel stiffness is an important factor for customers to perceive the robustness of the vehicle. In the real test of outer panel stiffness after prototype production, evaluators manually press the outer panel in advance to identify vulnerable areas to be tested and evaluate the performance only in those area. However, when developing the outer panel stiffness performance using FEA (Finite Element Analysis) before releasing the drawing, it is not possible to filter out these areas, so the entire outer panel must be evaluated. This requires a significant amount of computing resources and manpower. In this study, an approach utilizing artificial intelligence was proposed to streamline the outer panel stiffness analysis and improve development reliability.
Technical Paper

Distortion Reduction in Roller Offset Forming Using Geometrical Optimization

2024-04-09
2024-01-2857
Roller offsetting is an incremental forming technique used to generate offset stiffening or mating features in sheet metal parts. Compared to die forming, roller offsetting utilizes generic tooling to create versatile designs at a relatively lower forming speed, making it well-suited for low volume productions in automotive and other industries. However, more significant distortion can be generated from roller offset forming process resulting from springback after forming. In this work, we use particle swarm optimization to identify the tool path and resulting feature geometry that minimizes distortion. In our approach, time-dependent finite element simulations are adopted to predict the distortion of each candidate tool path using a quarter symmetry model of the part. A multi-objective fitness function is used to both minimize the distortion measure while constraining the minimal radius of curvature in the tool path.
Technical Paper

Open-loop Torque Control Strategy based on Constant Volume Instantaneous Combustion Model

2024-04-09
2024-01-2840
A model-based torque control strategy which is simple and easily adaptable to various types of engines is developed in this paper. A torque model is derived from constant-volume combustion model, and applications of the model to engine torque control problem are also discussed. As examples, the torque model is calibrated with experimental data collected from two different engines, and simulation and experimental results from the torque control strategy are presented as well.
Technical Paper

Combustion Timing Control Based on First Modal Coefficients of Individual Cylinder Pressure Traces

2024-04-09
2024-01-2842
When an SI engine is equipped with individual cylinder pressure transducers, combustion timing of each cylinder can be precisely controlled by adjusting spark timing in real-time. In this paper, a novel method based on principal component analysis (PCA) is introduced to control the combustion timing with a significantly less computational burden than a conventional method.
Technical Paper

A Study on Optimization Development of Cooling Fan Motor for EMC

2024-04-09
2024-01-1988
With the trend of electrification and connectivity, more electrified parts and more integrated chips are being applied. Consequently, potential problems based on electro-magnetic could occur more easily, and interest on EMC performance has been rising according to the degree of electrification. In this paper, one of the most severe systems, cooling fan motor in terms of EMI, is analyzed and improvement methods are suggested for each type of cooling fan. Additionally, an optimized configuration of improvement method for EMC has been derived through analysis and study. Finally, verification and validation are implemented at the system and vehicle levels.
Technical Paper

Optimization of Structural Rigidity of the Door Module Mounting part

2024-04-09
2024-01-2223
The recent surge in platforms like YouTube has facilitated greater access to information for consumers, and vehicles are no exception, so consumers are increasingly demanding of the quality of their vehicles. By the way, the door is composed of glass, moldings, and other parts that consumers can touch directly, and because it is a moving part, many quality issues arise. In particular, the door panel is assembled from all of the above-mentioned parts and thereby necessitates a robust structure. Therefore, this study focuses on the structural stiffness of the door inner panel module mounting area because the door module is closely to the glass raising and lowering, which is intrinsically linked to various quality issues.
Technical Paper

Development of a Light Weight Luggage Board Using the Sandwich Molding Method

2024-04-09
2024-01-2222
A crucial component utilized in the trunk space is the luggage board. Positioned at the bottom of the trunk, the trunk board separates the vehicle body from the interior and supports for luggage. The luggage board serves multiple functions, including load-bearing stiffness for luggage, partition structure functionality, noise insulation, and thermal insulation. There is a need for a competitive new luggage board manufacturing method to meet the increasing demand for luggage boards in response to the changing market environment. To address this, the "integrated sandwich molding method" is required. The integrated sandwich molding method utilizes three key methodologies: grouping processes to integrate similar functions, analyzing materials to replace them with suitable alternatives, and overcoming any lacking functionality through integrated design structures. This paper presents a methodology for developing the integrated sandwich molding method.
Technical Paper

Maximum Pulling Force Calculation of Permanent Magnet Tractor Motors in Electric Vehicle Applications

2024-04-09
2024-01-2217
In electric vehicle applications, the majority of the traction motors can be categorized as Permanent Magnet (PM) motors due to their outstanding performance. As indicated in the name, there are strong permanent magnets used inside the rotor of the motor, which interacts with the stator and causes strong magnetic pulling force during the assembly process. How to estimate this magnetic pulling force can be critical for manufacturing safety and efficiency. In this paper, a full 3D magnetostatic model has been proposed to calculate the baseline force using a dummy non-slotted cylinder stator and a simplified rotor for less meshing elements. Then, the full 360 deg model is simplified to a half-pole model based on motor symmetry to save the simulation time from 2 days to 2 hours. A rotor position sweep was conducted to find the maximum pulling force position. The result shows that the max pulling force happens when the rotor is 1% overlapping with the stator core.
Technical Paper

Approaches for Developing and Evaluating Emerging Partial Driving Automation System HMIs

2024-04-09
2024-01-2055
Level 2 (L2) partial driving automation systems are rapidly emerging in the marketplace. L2 systems provide sustained automatic longitudinal and lateral vehicle motion control, reducing the need for drivers to continuously brake, accelerate and steer. Drivers, however, remain critically responsible for safely detecting and responding to objects and events. This paper summarizes variations of L2 systems (hands-on and/or hands-free) and considers human drivers’ roles when using L2 systems and for designing Human-Machine Interfaces (HMIs), including Driver Monitoring Systems (DMSs). In addition, approaches for examining potential unintended consequences of L2 usage and evaluating L2 HMIs, including field safety effect examination, are reviewed. The aim of this paper is to guide L2 system HMI development and L2 system evaluations, especially in the field, to support safe L2 deployment, promote L2 system improvements, and ensure well-informed L2 policy decision-making.
Technical Paper

Enhanced Longitudinal Vehicle Speed Control for an Autonomous Gas-Engine Vehicle: Improving Performance and Efficiency

2024-04-09
2024-01-2059
A linear parameter-varying model predictive control (LPVMPC) is proposed to enhance the longitudinal vehicle speed control of a gas-engine vehicle, with potential application in autonomous vehicles. To achieve this objective, an advanced vehicle dynamic model and a sophisticated fuel consumption model are derived, forming a control-oriented model for the proposed control system. The vehicle dynamic model accurately captures the motions of the tires and the vehicle body. The fuel consumption model incorporates new powertrain modes such as automatic engine stop/start, active fuel management, and deceleration fuel cut-off, etc. The performance of the proposed LPV-MPC is evaluated by comparing it to a PID controller. Both simulation tests and vehicle-in-the-loop tests demonstrate the superior performance of the proposed controller. The results indicate that the LPV-MPC provides improved longitudinal vehicle speed control and reduced fuel consumption.
Technical Paper

Maximizing FCEV Stack Cooling Performance: Developing a Performance Prediction Model Based on Machine Learning for Evaporative Cooling Radiator

2024-04-09
2024-01-2586
Recently, regulations on automobile emission have been significantly strengthened to address climate change. The automobile industry is responding to these regulations by developing electric vehicles that use batteries and fuel-cells. Automobile emissions are environmentally harmful, especially in the case of vehicles equipped with high-temperature and high-pressure diesel engines using compression-ignition, the proportion of nitrogen oxides (NOx) emissions reaches as high as 85%. Additionally, air pollution caused by particulate matter (PM) is six to ten times higher compared to gasoline engines. Therefore, the electrification of commercial vehicles using diesel engines could potentially yield even greater environmental benefits. For commercial vehicles battery electric vehicles (BEVs) require a large number of batteries to secure a long driving range, which reduces their maximum payload capacity.
Technical Paper

Characterization of Embedded Debris Particles on Crankshaft Bearings

2024-04-09
2024-01-2594
Crankshaft bearings function to maintain the lubrication oil films needed to support crankshaft journals in hydrodynamic regime of rotation. Discontinuous oil films will cause the journal-bearing couple to be in a mixed or boundary lubrication condition, or even a bearing seizure or a spun bearing. This condition may further force the crankshaft to break and an engine shutdown. Spun bearings have been identified to be one of the top reasons in field returned engines. Excessive investigations have found large, embedded hard debris particles on the bearings are inevitably the culprit of destroying continuity of the oil films. Those particles, in particular the suspicious steel residues, in the sizes of hundreds of micrometers, are large enough to cause oil film to break, but rather fine and challenging for materials engineers to characterize their metallurgical features. This article presents the methodology and steps of debris analyses on bearings at different stages of engine build.
Technical Paper

A Preliminary Study on the Evaporative Cooling System for FCEV

2024-04-09
2024-01-2406
The existing FCEV have been developed with only a few vehicle models. With the diversification of both passenger and commercial FCEV lineups, as well as the increasing demand for vehicle trailer towing, there is a growing need for high-capacity fuel cell stacks to be applied in vehicles. However, at the current level, there are limitations and issues that arise, such as insufficient power output and reduced driving speed. As a results, the importance of thermal energy management has been increasing along with the increase in required power. Traditional cooling performance enhancement methods have mainly focused on developing increased hardware specifications, but even this approach has reached its limitation due to package, cost and weight problem. Therefore, it is essential to develop a new cooling system to solve the increases in heat dissipation.
Technical Paper

A Study on Reliability-Based Maximum Service Temperature Estimation of Plastic Automotive Parts

2024-04-09
2024-01-2421
Recently, the environmental temperature of vehicles is changing due to the electrification of vehicles and improved internal combustion engine system to reduce carbon emissions. However, mechanical properties of plastic materials change very sensitively to environmental temperature changes, and mechanical properties decrease when exposed to high temperatures. Therefore, it is important to estimate lifespan estimation of plastic parts according to temperature changes. In this paper, reliability analysis process to estimate the maximum service temperature of plastic parts was developed using aging data of material properties, environmental condition data of automotive parts, and field driving condition data. Changes in the mechanical properties of plastic materials such as glass fiber reinforced polyamide materials were tested. The environmental exposure temperature of the vehicle and parts was measured, and the general driving pattern of the vehicle was analyzed.
Technical Paper

Advanced Engine Cooling System for a Gas-Engine Vehicle Part I: A New Coolant Flow Control During Cold Start

2024-04-09
2024-01-2414
In this paper, we present a novel algorithm designed to accurately trigger the engine coolant flow at the optimal moment, thereby safeguarding gas-engines from catastrophic failures such as engine boil. To achieve this objective, we derive models for crucial temperatures within a gas-engine, including the engine combustion wall temperature, engine coolant-out temperature, engine block temperature, and engine oil temperature. To overcome the challenge of measuring hard-to-measure signals such as engine combustion gas temperature, we propose the use of new intermediate parameters. Our approach utilizes a lumped parameter concept with a mean-value approach, enabling precise temperature prediction and rapid simulation. The proposed engine thermal model is capable of estimating temperatures under various conditions, including steady-state or transient engine performance, without the need for extra sensors.
Technical Paper

An MBSE Methodology for Cross-Domain Vehicle Performance Development

2024-04-09
2024-01-2499
Even if an optimal design is produced in the mid-to-late stages of development, when the maturity of development is increasing, it is already difficult to accept the proposal between the organizations and functions. In case the optimal proposal is made with a small amount of information in the preceding stage, it will be helpful for mutual decision-making. In addition, if all members have a system and development environment that enables access and utilization of necessary data in a timely manner, it is possible to produce quick results through collaboration. To implement such a system and development environment, “digital modeling" of tangible and intangible assets will be essential and to implement an "integrated IT environment" that can access and utilize digital models. Until now, Hyundai Motor Company has not yet fully established a digital development environment that all researchers can simultaneously utilize during the concept development stage.
Technical Paper

Kinetic Model Development for Selective Catalytic Converter Integrated Particulate Filters

2024-04-09
2024-01-2631
To meet the stringent NOx and particulate emissions requirements of Euro 6 and China 6 standard, Selective Catalyst Reduction (SCR) catalyst integrated with wall flow particulate filter (SCR-DPF) has been found to be an effective solution for the exhaust aftertreatment systems of diesel engines. NOx is reduced by ammonia generated from urea injection while the filter effectively traps and burns the particulate matter periodically in a process called regeneration. The engine control unit (ECU) effectively manages urea injection quantity, timing and soot burning frequency for the stable functioning of the SCR-DPF without impacting drivability. To control the NOx reduction and particulate regeneration process, the control unit uses lookup tables generated from extensive hardware testing to get the current soot load and NOx slip information of SCR-DPF as a function of main exhaust state variables.
Technical Paper

Electric vehicle predictive thermal comfort management with solar load estimation

2024-04-09
2024-01-2607
Electric vehicles (EV) present distinctive challenges compared to ICE (Internal Combustion Engine) powered counterparts. Cabin heating and air-conditioning stand out among them, especially cabin heating in cold weather, owing to its outsized effect on drivable range of the vehicle. Efficient management of the cabin thermal system has the potential to improve vehicle range without compromising passenger comfort. A method to improve cabin thermal system regulation by effectively leveraging the solar load on the vehicle is proposed in this work. The methodology utilizes connectivity and mapping data to predict the solar load over a future time horizon. Typically, the solar load is treated as an unmeasured external disturbance which is compensated with control. It can however be treated as an estimated quantity with potential to enable predictive control. The solar load prediction, coupled with a passenger thermal comfort model, enables preemptive thermal system control over a route.
Technical Paper

Thermomechanical Fatigue Behavior of a Cast Austenitic Stainless Steel

2024-04-09
2024-01-2683
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed.
Technical Paper

Development and Simulation Validation of a Wheel/Tire Selective-Matching Algorithm Considering an Error Function of Wheel Runout Measuring Equipment

2024-04-09
2024-01-2651
In this study, a novel selective matching logic for a wheel/tire is proposed, to decrease the vehicle driving vibration caused by wheel/tire non-uniformity. The new logic was validated through matching simulation/in-line matching evaluation. A theoretical radial force variation model was established by considering the theoretical model of the existing references and the wheel/tire assembly mechanism. The model was validated with ZF’s high-speed uniformity equipment, which is standard in the tire industry. The validity of the new matching logic was verified through matching simulation and mass production in-line evaluation. In conclusion, the novel logic presented herein was demonstrated to effectively decrease the radial force variation caused by the wheel/tire.
X