Refine Your Search

Topic

Author

Search Results

Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

A Study on Overcoming Unavailable Backward Driving and a New Fail-Safe Strategy for R-Gearless (P)HEV System

2024-04-09
2024-01-2170
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study.
Technical Paper

Development and optimization of jet impingement on dimpled plate for maximizing cooling performance of an inverter

2024-04-09
2024-01-2216
A need to develop a cooling method with high cooling performance like jet impingement is increased as high power of an inverter is required. Jet Impingement on the dimpled plate would increase thermal performance than that of flat plate. Many previous researchers have dealt with the multi jet impingement on flat plate and some results of the study on dimpled plate evaluate the effect on heat transfer coefficients on several limited cases, making it difficult to apply them to inverter designs. Therefore, in this paper, heat transfer performance, pressure drop, and robustness at micro-scale of jet impingement on the dimpled plate were investigated in detail and the correlations of each performance were proposed. Finally, the optimal design was presented. The cooling performance was influenced by the jet array and the effect of depth and width of the dimples.
Technical Paper

Stability Monitoring Algorithm with a Combined Slip Tire Model for Maximized Cornering Speed of High-Speed Autonomous Driving

2023-04-11
2023-01-0684
This paper presents a stability monitoring algorithm with a combined slip tire model for maximized cornering speed of high-speed autonomous driving. It is crucial to utilize the maximum tire force with maintaining a grip driving condition in cornering situations. The model-free cruise controller has been designed to track the desired acceleration. The lateral motion has been regulated by the sliding mode controller formulated with the center of percussion. The controllers are suitable for minimizing the behavior errors. However, the high-level algorithm is necessary to check whether the intended motion is inside of the limit boundaries. In extreme diving conditions, the maximum tire force is limited by physical constraints. A combined slip tire model has been applied to monitor vehicle stability. In previous studies, vehicle stability was evaluated only by vehicle acceleration.
Technical Paper

Development of Truck Platooning System Including Emergency Braking Function with Vehicle-in-the-Loop (VIL) Testing

2023-04-11
2023-01-0571
Platoon is a system that connects vehicles through vehicle-to-vehicle (V2V) communication technology to maintain a short distance between vehicles while driving on the road. To improve fuel efficiency, many automotive original equipment manufacturers (OEMs) are interested in developing and demonstrating real-world platoon system. However, it is hard for heavy duty trucks to develop this system due to the difficulty of maintaining the targeted intervehicle distance not only for fuel efficiency but also for safety in case of emergency braking. Because of this critical safety issue in the emergency situation, the platoon system for heavy duty trucks can be hardly demonstrated or tested in real vehicle environment. The relatively complex system and the slow response characteristic of commercial vehicles makes this even more difficult.
Technical Paper

Driver Mental Stress in Response to Thermal Stress Change during Highway Driving

2023-04-11
2023-01-0146
Monitoring driver thermal stress is an integral step for developing an automated climate control function. In this experimental study, various physiological measures for driver’s thermal stress were tracked while intentionally by altering thermal conditions of the seat with a seat air conditioning system (ACS) in summer and a seat heating system (HS) in winter. It was aimed to determine reliable physiological measures for identifying the changes in thermal status induced by the two seat climate control systems. In the first experiment, twenty experienced drivers drove a comfortable sedan for 60 minutes on a real highway while varying the intensity of the seat ACS every 10 minutes to incur ‘hot’ – ‘cool’ – ‘hot’ – ‘cool’ thermal stress. In the second experiment, a new group of eighteen drivers drove the same highway for 30 minutes while increasing the intensity of seat HS to incur ‘cold’ to ‘warm’ thermal stress.
Technical Paper

Enhancing Meta Model of the Brake Pad Friction Coefficient Using the Explainable Machine Learning

2022-09-19
2022-01-1175
Recently, increasing system complexity and various customer demands result in the need for highly efficient vehicle development processes. Once the brake torque is predicted accurately during the driving scenario in the earlier stage, it will be able to prevent the changing the vehicle or brake system design to satisfy the legal regulation and customer requirement. As brake torque performance target allocate brake pad friction coefficient level and characteristic, the accurate friction coefficient prediction should be preceded for accurate prediction for brake torque. Generally, the friction coefficient of the brake pad is known to vary nonlinearly depending on the physical properties of the disc and the pad, as well as the brake disc rotational speed, the disc temperature, and the hydraulic pressure. Furthermore, it varies depending on the driving scenario even when other conditions are the same. Therefore, it is necessary to apply new methods to solve these challenges.
Technical Paper

Brake Pad Wear Monitor using MOC (Motor on Caliper) EPB ECU

2022-09-19
2022-01-1167
With the spread of new trends such as autonomous driving and vehicle subscription service, drivers may pay less attention to the maintenance of the vehicle. Brake pads being safety critical components, the wear condition of all service brakes is required by regulation to be indicated by either acoustic of optical devices or a means of visually checking the degree of brake lining wear [1]. Current application of the wear indicator in the market uses either sound generating metal strip or wire harness based pad wear sensor. The former is not effective in generating clear alarm to the driver, and the latter is not cost effective, and there is a need for more effective and low cost solution. In this paper, a pad wear monitoring system using MOC(Motor On Caliper) EPB(Electric Parking Brake) ECU is proposed. An MOC EPB is equipped with a motor, geartrain and an ECU. The motor current when applying the parking brake is influenced by the mechanical load at the brake pad side of the system.
Technical Paper

Lateral Control of a Commercial Vehicle Using Feedback Augmented Disturbance Observer

2022-03-29
2022-01-0093
In the path following problem, a commercial vehicle has a delay of a hydraulic steering actuator and slow steering response accordingly. In addition, there are disturbances due to the harsh driving conditions of commercial vehicles. These disturbances may include uncertainties about actuator dynamic delay, modeling error and steering angle sensor offset. Designing a lateral controller with good performance that can overcome this problem is the key to successfully carrying out autonomous driving of commercial vehicles. Usually, it is difficult to consider disturbances with uncertainties in the geometric based control methods. Therefore, this paper proposed a lateral controller using feedback augmented disturbance observer for the commercial vehicle. First, a dynamics was modeled which can describe delay of the hydraulic actuator of the commercial vehicle. After that, a lateral controller was designed based on this dynamics model.
Technical Paper

Integrated Control of In-Wheel Motor and Electronic Limited Slip Differential for Lateral Stability and Maneuverability

2021-04-06
2021-01-0974
This paper presents an integrated control of in-wheel motor (IWM) and electronic limited slip differential (eLSD) to enhance the vehicle lateral stability and maneuverability. The two actuators are utilized in the proposed controller to achieve separate purposes. The IWM controller is designed to modify the understeer gradient for enhanced handling characteristic and maneuverability. The eLSD controller is devised to improve the lateral stability to prevent oversteer in a severe maneuver. The proposed controller consists of a supervisor, upper-level controller and lower-level controller. The supervisor determines a target motion based on a target understeer gradient for IWM control and a yaw rate reference for eLSD control. The upper-level controller generates a desired yaw moment for the target motion. In the lower-level controller, the desired yaw moment is converted to the control inputs for IWMs in the two front wheels and eLSD at the rear axle.
Technical Paper

Robust Control of Commercial Vehicle’s Speed Using Disturbance Observer

2021-04-06
2021-01-0966
This paper proposes a speed controller using a disturbance observer to regulate the speed of a commercial vehicles, and presents vehicle test results to evaluate the performance of the proposed controller. Most ADAS (Advanced Driver Assistance System) and automated driving systems need to reliably regulate the vehicle's speed under any circumstances. A conventional PID controller is commonly used to control the vehicle speed, but performance of it varies depending on changes in external conditions. Commercial vehicles are even more susceptible to these changes than passenger cars and more difficult to obtain an accurate plant model. Considering these features, a speed controller using a disturbance observer is designed for commercial vehicles. The proposed controller treats changes in external conditions as disturbances. The modeling uncertainty is also treated as a disturbance.
Technical Paper

A Performance Design of Constant Pressure Type Exhaust Brake

2021-04-06
2021-01-0398
In commercial vehicles, the exhaust brake assists the service brake to share the excess load and is used as an auxiliary brake to assist with the safety of the engine and the service brake on downhill slopes. To meet the customer's demand for auxiliary brakes, the specification of auxiliary brakes must be determined at the product proposal stage. In this study, performance design was conducted to derive exhaust brake specifications that fit the customer's requirements. For performance design, a system model was created and key design factors with high performance contribution were extracted. Optimal specifications were derived from parameter studies for key design factors. Additionally, performance analysis was performed with design tolerances using the performance design model. Performance was verified through actual vehicle evaluation and design specifications were confirmed.
Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

2020-09-30
2020-01-1535
The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. This paper illustrates a comparative conceptual study on windshield actuation for the active control of wind noise in a passenger car. Making use of an experimental modal analysis of the windshield installed in a medium-sized vehicle, a reduced order numerical simulation model is derived.
Technical Paper

Development, System Integration and Experimental Investigation of an Active HVAC Noise Control System for a Passenger Car

2020-09-30
2020-01-1538
Current developments in the automotive industry such as electrification and consistent lightweight construction increasingly enable the application of active control systems for the further reduction of noise in vehicles. As different stochastic noise sources such as rolling and wind noise as well as noise radiated by the ventilation system are becoming more noticeable and as passive measures for NVH optimization tend to be heavy and construction-space intensive, current research activities focus on active reduction of noise caused by the latter mentioned sources. This paper illustrates the development, implementation and experimental investigation of an active noise control system integrated into the ventilation duct system of a passenger car.
Technical Paper

Eco-Vehicle Battery System Big-Data Analysis and Fault Mode and Fault Tree Analysis (FTA) Related Robust System Development

2020-04-14
2020-01-0447
High-voltage battery system plays a critical role in eco-friendly vehicles due to its effect on the cost and the electric driving range of eco-friendly vehicles. In order to secure the customer pool and the competitiveness of eco-vehicle technology, vehicle electrification requires lowering the battery cost and satisfying the customer needs when driving the vehicles in the real roads, for example, maximizing powers for fun drive, increasing battery capacities for achieving appropriate trip distances, etc. Because these vehicle specifications have a critical effect on the high-voltage battery specification, the key technology of the vehicle electrification is the appropriate decision on the specification of the high-voltage battery system, such as battery capacity and power. These factors affect the size of battery system and vehicle under floor design and also the profitability of the eco-friendly vehicles.
Technical Paper

A Study on the Optimum Reduction of Required Brake Fluid Level for Improvement of the High Speed Continuous Brake Distance

2019-09-15
2019-01-2121
The high speed continuous braking distance assessment is the worst condition for thermal fades. This study was conducted to investigate the relationship between fade characteristic and friction materials & brake fluid amount for improving braking distance. So, we used the dynamometer to measure the friction coefficient, braking distance and required brake fluid amount. Through the measurements, the research was carried out as follows. First of all, we studied the influence of friction coefficient about different shapes (chamfer shape, area of the friction material, number of slots) on the same friction material. Secondly, we knew the effects of braking distance by the shape of the friction material. Through these two studies, the shape of the friction material favorable to the fade characteristics was derived. Finally, we measured the amount of required brake fluid in caliper after 10 consecutive braking cycles through Dynamometer.
Journal Article

A Study of the Disc Scoring Generation Principle and Reduction(III)

2019-09-15
2019-01-2112
In the latest works [12], we presented the guideline for reducing Metal pick up(MPU, the main component of disc scoring) by controlling the location of the roughness of disc, the brake pad friction coefficients and the disc slot's size. In this study, the previously studied iron transfer theory to 'Cu free' brake pad and the disc surface roughness controlling methods which are based on the mass production manufacturing process are applied. It is possible to suggest the ways to improve the scoring-free disc without reducing friction coefficient between the disc and pad, and any demerit such as increased wear and airplane noise like conventional slot discs [11].
Technical Paper

Estimation of Side Slip Angle Interacting Multiple Bicycle Models Approach for Vehicle Stability Control

2019-04-02
2019-01-0445
This paper presents an Interacting Multiple Model (IMM) based side slip angle estimation method to estimate side slip angle under various road conditions for vehicle stability control. Knowledge of the side slip angle is essential enhancing vehicle handling and stability. For the estimation of the side slip angles in previous researches, prior knowledge of tire parameters and road conditions have been employed, and sometimes additional sensors have been needed. These prior knowledge and additional sensors, however, necessitates many efforts and make an application of the estimation algorithm difficult. In this paper, side slip angle has been estimated using on-board vehicle sensors such as yaw rate and lateral acceleration sensors. The proposed estimation algorithm integrates the estimates from multiple Kalman filters based on the multiple models with different parameter set.
Technical Paper

A Development of the Model Based Torque Feedback Control with Disturbance Observer for Electric Power Steering System

2019-04-02
2019-01-1233
Electric Power Steering (EPS) needs to meet both functional and stability requirements, it plays significant role in controlling vehicle motion. In the meantime, customers emphasizes natural steering feel which can reflect vehicle motion and road surface information while isolate unwanted external disturbances. In general, conventional EPS control algorithms exert assist torque according to driver torque measured from torque sensor, while maintaining stability using stabilizing compensator. However, there exist significant trade-off between steering feel and stability, because the performances of assist torque control and stabilizing compensator are strongly coupled. In this paper a torque feedback control algorithm for EPS system is proposed in order to overcome the trade-off, and to achieve more natural, robust steering feel.
X