Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Simulation of Aircraft Virtual Architecture - Bleed Off-Take and ECS

2017-09-19
2017-01-2159
To allow greater confidence in an aircraft system design in an ever increasing complex set of requirements, it becomes important to assess the interactions among systems and sub-systems earlier and with higher confidence. This study presents the Virtual Integrated Aircraft (VIA) methodology, which allows the integration of aircraft systems with virtual means. It aims to complement and precede physical integration, which is usually completed at the end of the validation and integration phase. LMS Imagine.Lab platform provides a means for applying this methodology. A simulation architecture, integrating models from different platforms, is built and simulations are run on a High Performance Computing (HPC) machine to cover multiple scenarios and therefore validate the selected architecture and pre-design in the early system development phases. A balanced selection of equipment, systems and subsystems are essential for the performance, safety, reliability and comfort.
Technical Paper

Target Setting and Prediction for Cabin Noise and Vibration in Aircraft Development

2017-06-05
2017-01-1766
A methodology to secure cabin noise and vibration targets is presented. Early in the design process, typically in the Joint Definition Phase, Targets are cascaded from system to component level to comply with the overall cabin noise target in various load cases. During the Detailed Design Phase, 3D simulation models are build up to further secure and refine the vibro-acoustic performance of the cabin noise related subsystems. Noise sources are estimated for the target setting based on layer analytical and empirical expressions from literature. This includes various types of engine noise - fan, jet, and propeller noise - as well as turbulent boundary layer noise. For other noise sources, ECS and various auxiliaries, targets are set such as to ensure the overall cabin noise level. To synthesize the cabin noise, these noise sources are combined with estimates of the noise transfer through panels and the cavity effect of the cabin.
Journal Article

Minimizing Aircraft ECS Bleed Off-Take - Virtual Integrated Aircraft Applications

2016-09-20
2016-01-2054
This paper presents the activities foreseen on the Leonardo Aircraft Division EIS (Entry In Service) 2020 derivative aircraft performed in the frame of the FP7 European research project TOICA (Thermal Overall Integrated Concept of Aircraft). On board air systems for conventional aircraft are fed by the bleed off-take which penalizes the amount of power available to the turbine of jet or turboprop engines. In order to minimize such operating penalties and optimize the energy efficiency of the overall aircraft, it is of major interest to support trade-offs at aircraft level including aircraft systems as early as possible in the development cycle. The study presents the Virtual Integrated Aircraft methodology and associated simulation activities relying on the system simulation platform LMS Imagine.Lab. This methodology is also relying on concept of flexible model and pyramid of models developed in the context of TOICA.
X