Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

XiLS (X in the Loop Simulation) Based Thermal Management Development

2024-04-09
2024-01-2272
The significance of thermal management performance in electric vehicles (EVs) has grown considerably, leading to increased complexity in thermal systems and a rapid rise in safety and quality-related concerns. The present real-vehicle-based development methods encounter several constraints in their approach when dealing with highly complex systems. Huge number of verification and validation work To overcome these limitations and enhance the thermal system development process, a novel virtual development environment established using the XiLS (X in the Loop Simulation) methodology. This XiLS methodology basically based on real-time coupling between physical thermal system hardware and analytical models for the other systems of vehicle. To control vehicle model and thermal system, various options were realized through hardware, software and model for VCU (Vehicle control unit) and TMS (Thermal management system) control unit.
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Technical Paper

The Effect of Exhaust Emission Conditions and Coolant Temperature on the Composition of Exhaust Gas Recirculation Cooler Deposits

2023-04-11
2023-01-0438
Exhaust Gas Recirculation (EGR) coolers are widely used on diesel engines to reduce in-cylinder NOx formation. A common problem is the accumulation of a fouling layer inside the heat exchanger, mainly due to thermophoresis that leads to deposition of particulate matter (PM), and condensation of hydrocarbons (HC) from the diesel exhaust. From a recent investigation of deposits from field samples of EGR coolers, it was confirmed that the densities of their deposits were much higher than reported in previous studies. In this study, the experiments were conducted in order to verify hypotheses about deposit growth, especially densification. An experimental set up which included a custom-made shell and tube type heat exchanger with six surrogate tubes was designed to control flow rate independently, and was installed on a 1.9 L L-4 common rail turbo diesel engine.
Technical Paper

An In-Cylinder Imaging Study of Pre-chamber Spark-Plug Flame Development in a Single-Cylinder Direct-Injection Spark-Ignition Engine

2023-04-11
2023-01-0254
Prior work in the literature have shown that pre-chamber spark plug technologies can provide remarkable improvements in engine performance. In this work, three passively fueled pre-chamber spark plugs with different pre-chamber geometries were investigated using in-cylinder high-speed imaging of spectral emission in the visible wavelength region in a single-cylinder direct-injection spark-ignition gasoline engine. The effects of the pre-chamber spark plugs on flame development were analyzed by comparing the flame progress between the pre-chamber spark plugs and with the results from a conventional spark plug. The engine was operated at fixed conditions (relevant to federal test procedures) with a constant speed of 1500 revolutions per minute with a coolant temperature of 90 oC and stoichiometric fuel-to-air ratio. The in-cylinder images were captured with a color high-speed camera through an optical insert in the piston crown.
Technical Paper

Using Analytical Techniques to Understand the Impacts Intelligent Thermal Management Has on Piston NVH

2022-06-15
2022-01-0930
In order to align with net-zero CO2 ambitions, automotive OEMs have been developing increasingly sophisticated strategies to minimise the impact that combustion engines have on the environment. Intelligent thermal management systems to actively control coolant flow around the engine have a positive impact on friction generated in the power cylinder by improving the warmup rate of cylinder liners and heads. This increase in temperature results in an improved frictional performance and cycle averaged fuel consumption, but also increases the piston to liner clearances due to rapid warm up of the upper part of the cylinder head. These increased clearances can introduce piston slap noise and substantially degrade the NVH quality to unacceptable levels, particularly during warmup after soak at low ambient temperatures. Using analytical techniques, it is possible to model the thermo-structural and NVH response of the power cylinder with different warm up strategies.
Journal Article

FBS Decoupling at Suspension Level for Road Noise Applications

2022-06-15
2022-01-0978
With the electrification trend in the automotive industry, the main contributors to in-vehicle noise profile are represented by drivetrain, road and wind noise. To tackle the problem in an early stage, the industry is developing advanced techniques guaranteeing modularity and independent description of each contributor. Component-based Transfer Path Analysis (C-TPA) allows individual characterization of substructures that can be assembled into a virtual vehicle assembly, allowing the manufacturers to switch between different designs, to handle the increased number of vehicle variants and increasing complexity of products. A major challenge in this methodology is to describe the subsystem in its realistic operational boundary conditions and preload. Moreover, to measure such component, it should be free at the connection interfaces, which logically creates significant difficulties to create the required conditions during the test campaign.
Technical Paper

Development of a New Flammability Test Method: Enabling Material-Level Evaluation of Polymeric Materials for Electric Vehicle Battery Enclosures

2022-03-29
2022-01-0714
The need to reduce weight and cost of battery systems for electric vehicles has led to continued interest in metal-to-plastic substitution and mixed-material designs for battery enclosures. However, the ever-increasing performance requirements of such systems pose a challenge for plastic materials to meet. In an effort to design a cost-effective, lightweight next-generation battery enclosure while meeting the latest requirements, a new thermal runaway test method was developed, and several materials were screened. The objectives of this development project were twofold. The first was to develop a small-scale test method representative of real-world thermal runaway conditions that could be used early in the design process.
Technical Paper

Development of HANIKIN: A Passive Heated Seat Testing Manikin

2022-03-29
2022-01-0810
Seat Heater testing methods traditionally rely on a human subject to provide normal contact, load, and thermal conditions. This creates a thermal environment closer to what an actual customer might experience but it also introduces a variation from individual subject’s seating posture, body size, and metabolic differences. This paper describes the development and initial testing results of a passive, heated seat testing manikin (or HANIKIN) that is intended to replace human subjects for more meaningful, repeatable objective testing.
Technical Paper

A Study on the Robust Crash Performance Structure of Continuous Fiber Thermoplastic Composite Cowl Crossbar

2022-03-29
2022-01-0872
Recently, keen interest has been focused on the reduction of fuel consumption through the development of eco-friendly and weight-effective vehicles. This is due in part to the strengthening of regulatory standards for fuel efficiency in each country. This study will focus on the optimization of the IP (Instrument Panel) module, in particular, the cowl crossbar, which in some vehicles, can account for more than 33% of the IP module weight. The design objectives of the cowl crossbar were to use continuous fiber thermoplastic composite materials to achieve high stiffness, while optimizing the strength to weight performance as evaluated through vehicle sled and crash testing. This research will introduce the development and optimization methodology for an alternative material, which achieved about a 30% weight reduction as compared to steel.
Technical Paper

Gauge R & R Study for SAE J3103

2021-04-06
2021-01-0862
The H-point is a critical part of vehicle design as it is the basis for many engineering dimensions within the vehicle interior. A complete design process includes comparisons of the design to competitive benchmark vehicles. However, the competitive design considerations needed to determine the common standard H-point reference are often unknown. The SAE Human Accommodation and Design Devices (HADD) technical committee recently published a new standard benchmark SgRP procedure [2]. This new standard practice needed to be tested with respect to the accuracy and repeatability for determining the unknown h-point design parameters within industry benchmarking tolerances. In 2019, the SAE HADD committee conducted a study to evaluate the reproducibility of the new procedure. This paper presents detailed results of that study and discusses opportunities for applying the new benchmark practice.
Technical Paper

Performance of DSRC V2V Communication Networks in an Autonomous Semi-Truck Platoon Application

2021-04-06
2021-01-0156
Autonomy for multiple trucks to drive in a fixed-headway platoon formation is achieved by adding precision GPS and V2V communications to a conventional adaptive cruise control (ACC) system. The performance of the Cooperative ACC (CACC) system depends heavily on the reliability of the underlying V2V communications network. Using data recorded on precision-instrumented trucks at both ACM and NCAT test tracks, we provide an understanding of various effects on V2V network performance: Occlusions - non-line-of-sight (NLOS) between the Tx and Rx antenna may cause network signal loss. Rain - water droplets in the air may cause network signal degradation. Antenna position - antennas at higher elevation may have less ground clutter to deal with. RF interference - interference may cause network packet loss. GPS outage - outages caused by tree cover, tunnels, etc. may result in degraded performance. Road curvature - curves may affect antenna diversity.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Technical Paper

Development of Boiling Prediction Method in LP-EGR Cooler and Shape Optimization for Suppressing Boiling using Boiling Index

2021-04-06
2021-01-0228
An EGR system has been significantly used in order to cope with reinforced exhaust gas regulation and enhancement of fuel efficiency. For the well-designed EGR cooler, performance analysis is basically required. Furthermore, boiling prediction of the EGR cooler is especially essential to evaluate durability failure of abnormal operating conditions in DPF. However, due to intrinsic complexity of detailed 3-dimensional heat transfer tubes in the EGR cooler, no precise technique of boiling prediction has been developed. Therefore, this research had been performed in order to fulfill 3 goals: (1) development of 3-dimentional performance prediction technique including boiling occurrence, (2) generation and validation of a new evaluation index for boiling, (3) development of an optimized EGR cooler for suppressing boiling. In order to increase analysis accuracy and reduce analysis efforts at the same time, 3-dimensional single-phase flow analysis was developed.
Technical Paper

Efficient Method for Active Sound Design Using an NVH Simulator

2020-04-14
2020-01-1360
Active Sound Design (ASD) allows the Personalized Engine Sound System to be implemented for different types of vehicles and in different geographical regions. While this process is possible, it requires a lot of on-road tuning and therefore is very time consuming. This study presents an efficient way of tuning ASD sounds based on binaural synthesis in a lab environment instead of on-road tuning. The on-road vehicle operating sounds are reproduced by a desktop NVH simulator while the binaural ASD sounds are synthesized by convolving measured Binaural Vehicle Impulse Responses with the output of ASD multi-channel amplifier in real time. A set of binaural recordings on road are compared with the reproduced sound in the lab environment. The comparison results showed the validity of the proposed method for ASD. The main advantage of this approach is the possibility of back-to-back comparison across different ASD tunings.
Technical Paper

Engine and Aftertreatment Co-Optimization of Connected HEVs via Multi-Range Vehicle Speed Planning and Prediction

2020-04-14
2020-01-0590
Connected vehicles (CVs) have situational awareness that can be exploited for control and optimization of the powertrain system. While extensive studies have been carried out for energy efficiency improvement of CVs via eco-driving and planning, the implication of such technologies on the thermal responses of CVs (including those of the engine and aftertreatment systems) has not been fully investigated. One of the key challenges in leveraging connectivity for optimization-based thermal management of CVs is the relatively slow thermal dynamics, which necessitate the use of a long prediction horizon to achieve the best performance. Long-term prediction of the CV speed, unlike the short-range prediction based on vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications-based information, is difficult and error-prone.
Technical Paper

Innovative Additive Manufacturing Process for Successful Production of 7000 Series Aluminum Alloy Components Using Smart Optical Monitoring System

2020-04-14
2020-01-1300
Aircraft components are commonly produced with 7000 series aluminum alloys (AA) due to its weight, strength, and fatigue properties. Auto Industry is also choosing more and more aluminum component for weight reduction. Current additive manufacturing (AM) methods fall short of successfully producing 7000 series AA due to the reflective nature of the material along with elements with low vaporization temperature. Moreover, lacking in ideal thermal control, print inherently defective products with such issues as poor surface finish alloying element loss and porosity. All these defects contribute to reduction of mechanical strength. By monitoring plasma with spectroscopic sensors, multiple information such as line intensity, standard deviation, plasma temperature or electron density, and by using different signal processing algorithm, AM defects have been detected and classified.
Journal Article

Reduced Power Seat Heater System Using Thermal Wave Technology

2020-04-14
2020-01-0872
This paper presents a method of controlling the seat heater using intentional oscillations between multiple, independently controlled temperatures (each with its own tolerance range). The amplitude and frequency of these oscillations can be changed based on secondary trigger events such as changes in the interior temperature. The benefits of using this technique to heat the seat surface are improved thermal sensation and reduced energy usage over the typical drive time.
Technical Paper

Advanced Bench Test Methodology for Generating Wet Clutch Torque Transfer Functions for Enhanced Drivability Simulations

2019-12-19
2019-01-2340
A wet clutch continues to play a critical role for step-ratio automatic transmissions and finds new utilities in hybrid and electrified propulsion systems. A torque transfer function is often employed in practice for sophisticated clutch slip controls. It provides a simple, yet practical framework to represent clutch torque as a function of actuator force. An accurate transfer function is also increasingly desired in today's vehicle design process to enable upfront assessment of clutch controls through simulations. The most common approach is based on Coulomb's linear friction model, where the coefficients are adaptively identified based on vehicle data. However, it is generally difficult to tune Coulomb's model for hydrodynamic behaviors even if the reference vehicle data are available. It also remains a challenge to produce in-vehicle clutch behaviors on a component test bench to determine realistic transfer function before prototype vehicles are built.
Technical Paper

Design of Experiments for Effects and Interactions during Brake Emissions Testing Using High-Fidelity Computational Fluid Dynamics

2019-09-15
2019-01-2139
The investigation and measurement of particle emissions from foundation brakes require the use of a special adaptation of inertia dynamometer test systems. To have proper measurements for particle mass and particle number, the sampling system needs to minimize transport losses and reduce residence times inside the brake enclosure. Existing models and spreadsheets estimate key transport losses (diffusion, turbophoretic, contractions, gravitational, bends, and sampling isokinetics). A significant limitation of such models is that they cannot assess the turbulent flow and associated particle dynamics inside the brake enclosure; which are anticipated to be important. This paper presents a Design of Experiments (DOE) approach using Computational Fluid Dynamics (CFD) to predict the flow within a dynamometer enclosure under relevant operating conditions. The systematic approach allows the quantification of turbulence intensity, mean velocity profiles, and residence times.
Technical Paper

Fuel Efficiency Technology Impact on Radiator Thermal Durability

2019-04-02
2019-01-0498
With the increasing stringency of emission regulations, auto makers are now improving vehicle fuel efficiency via all kinds of technologies, such as hybrid systems, turbocharged or supercharged engines, engine auto start/stop, active grille shutters, etc. By implementing a variety of technologies, the engine cooling module’s working environment and work load has changed. This paper will mainly focus on the impact to the thermal durability of the engine cooling module’s main radiator from active grille shutter and electric thermostat implementation. A 2017MY hybrid vehicle using the above technology is evaluated by a wind tunnel test at a variety of ambient temperatures and driving conditions. First, such technologies’ control logic is studied by the wind tunnel test, so that the evaluation condition for evaluating the radiator’s thermal stress can be properly chosen to represent the actual field usage.
X