Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Zero Emission Hydrogen Internal Combustion Engine for a 5 kW Mobile Power Generator: Conversion Strategy for Carburetted SI Engines

2023-08-28
2023-24-0183
A carburetted, spark ignited gasoline fuelled engine of a 5 kW rated power generator was converted to run on hydrogen. As opposed to large parts of current research, the engine conversion’s foremost goal was not to maximise efficiency and power output but rather to find a cost-effective and low-complexity conversion approach to introduce clean fuels to existing engines. To allow for the increased volumetric fuel flow, the riser of the original carburettor was enlarged. The hydrogen flow into the venturi was metered with the help of a pressure regulator from a widely available conversion kit. The effects of different hydrogen-fuel-feed pressures on engine performance, operational stability and emission levels were examined experimentally. It was found that the hydrogen-line pressure before startup has to be set precisely (±5 mbar) to allow for stable and emission free operation.
Technical Paper

Prediction of Electric Vehicle Transmission Efficiency Using a New Thermally Coupled Lubrication Model

2022-04-13
2022-01-5026
We present a new method to predict the power losses in electric vehicle (EV) transmission systems using a thermally coupled gearbox efficiency model. Friction losses in gear teeth contacts are predicted using an iterative procedure to account for the thermal coupling between the tooth temperature, oil viscosity, film thickness, friction, and oil rheology during a gear mesh cycle. Crucially, the prediction of the evolution of the coefficient of friction (COF) along the path of contact incorporates measured lubricant rheological parameters as well as measured boundary friction. This allows the model to differentiate between nominally similar lubricants in terms of their impact on EV transmission efficiency. Bearing and gear churning losses are predicted using existing empirical relationships. The effects of EV motor cooling and heat transfers in the heat exchanger on oil temperature are considered.
Technical Paper

Impacts of particulate matter emissions from a highway on the neighboring population

2021-03-26
2020-36-0235
The road freight transport sector is one of the main responsible for the air pollution (as the case of particulate matter) and greenhouse gases emissions worldwide. Different types of fuel technologies have been developed in order to improve efficiency, reduce air pollution impacts, such as the case of liquefied natural gas (LNG) for heavy-duty vehicles. Many studies show the relationship between the effects of short and long-term exposure to particulate matter (PM) and, according to the World Health Organization (WHO), premature deaths worldwide as well as cardiorespiratory diseases in elderly population are related to this pollutant. In this context, this paper aims at evaluating the atmospheric dispersion of PM in a stretch of a highway (Anhanguera-Bandeirantes) in the São Paulo State in Brazil due to the road freight transport considering the use of diesel and LNG in heavy-duty vehicles and the impacts on human health. The software AERMOD designed by U.S.
Technical Paper

Numerical Simulations of the Effect of Cold Fuel Temperature on In-Nozzle Flow and Cavitation Using a Model Injector Geometry

2020-09-15
2020-01-2116
In the present study, Large Eddy Simulations (LES) have been performed with a 3D model of a step nozzle injector, using n-pentane as the injected fluid, a representative of the high-volatility components in gasoline. The influence of fuel temperature and injection pressure were investigated in conditions that shed light on engine cold-start, a phenomenon prevalent in a number of combustion applications, albeit not extensively studied. The test cases provide an impression of the in-nozzle phase change and the near-nozzle spray structure across different cavitation regimes. Results for the 20oC fuel temperature case (supercavitating regime) depict the formation of a continuous cavitation region that extends to the nozzle outlet. Collapse-induced pressure wave dynamics near the outlet cause a transient entrainment of air from the discharge chamber towards the nozzle.
Technical Paper

Large-Scale Simulation of PEM Fuel Cell Using a “3D+1D” Model

2020-04-14
2020-01-0860
Nowadays, proton exchange membrane (PEM) fuel cell is widely seen as a promising energy conversion device especially for transportation application scenario because of its high efficiency, low operation temperature and nearly-zero road emission. Extensive modeling work have been done based on different dimensions during the past decades, including one-dimensional (1D), two-dimensional (2D), three-dimensional (3D) and intermediate combinations in between (e.g. “1+1D”). 1D model benefits from a rationally-chosen set of assumptions to obtain excellent calculation efficiency, yet at the cost of accuracy to some extent. In contrast, 3D model has great advantage over 1D model on acquiring more comprehensive information inside the fuel cell. For macro-scale modeling work, one compromise aiming to realize both acceptable computation speed and reasonable reflection of cell operation state is to simplify the membrane electrode assembly (MEA).
Technical Paper

On-Engine Performance Evaluation of a New-Concept Turbocharger Compressor Housing Design

2020-04-14
2020-01-1012
Following market demands for a niche balance between engine performance and legislation requirement, a new-concept compressor scroll has been designed for small to medium size passenger cars. The design adopts a slight deviation from the conventional method, thus resulting in broader surge margin and better efficiency at off-design region. This paper presents the performance evaluation of the new compressor scroll on the cold-flow gas-stand followed by the on-engine testing. The testing program focused on back-to-back comparison with the standard compressor scroll, as well as identifying on-engine operational regime with better brake specific fuel consumption (BSFC) and transient performance. A specially instrumented 1.6L gasoline engine was used for this study. The engine control unit configuration is kept constant in both the compressor testing.
Journal Article

Optimization of an Asymmetric Twin Scroll Volute Turbine under Pulsating Engine Boundary Conditions

2020-04-14
2020-01-0914
Future CO2 emission legislation requires the internal combustion engine to become more efficient than ever. Of great importance is the boosting system enabling down-sizing and down-speeding. However, the thermodynamic coupling of a reciprocating internal combustion engine and a turbocharger poses a great challenge to the turbine as pulsating admission conditions are imposed onto the turbocharger turbine. This paper presents a novel approach to a turbocharger turbine development process and outlines this process using the example of an asymmetric twin scroll turbocharger applied to a heavy duty truck engine application. In a first step, relevant operating points are defined taking into account fuel consumption on reference routes for the target application. These operation points are transferred into transient boundary conditions imposed on the turbine.
Journal Article

Optical Diagnostics Investigation on the Effect of Fuel Injection Timing on Partially Premixed Combustion Stratification and Soot Formation in a Single-Cylinder Optical Compression Ignition Engine

2019-09-09
2019-24-0028
The present work investigates the effect of fuel injection timing on combustion stratification and soot formation in an optically accessible, single cylinder light duty diesel engine. The engine operated under low load and low engine speed conditions, employing a single injection scheme. The conducted experiments considered three different injection timings, which promoted Partially Premixed Combustion (PPC) operation. The fuel quantity of the main injection was adjusted to maintain the same Indicated Mean Effective Pressure (IMEP) value among all cases considered. Findings were analysed via means of pressure trace and apparent heat transfer rate (AHTR) analyses, as well as a series of optical diagnostics techniques, namely flame natural luminosity, CH* and C2* chemiluminescence high-speed imaging, as well as planar Laser Induced Incandescence (pLII).
Journal Article

Experimental Measurement of Roughness Data and Evaluation of Greenwood/Tripp Parameters for the Elastohydrodynamic Analysis of a Conrod Small-End/Piston Pin Coupling

2019-09-09
2019-24-0081
For the investigation of the tribological behavior of lubricated contacts, the choice and the calibration of the adopted asperity contact model is fundamental, in order to properly mimic the mixed lubrication conditions. The Greenwood/Tripp model is extensively adopted by the commercial software commonly employed to simulate lubricated contacts. This model, based on a statistic evaluation of the number of asperities in contact and on the Hertzian contact theory, has the advantage of introducing a simple relationship between oil film thickness and asperity contact pressure, considerably reducing the simulation time. However, in order to calibrate the model, some non-standard roughness parameters are required, that are not available from commercial roughness measuring equipment. Standard values, based on some limited experiences, are typically used, and a limited literature can be found focusing on how to evaluate them, thus reducing the predictivity of the model.
Technical Paper

Steady-State, Transient and WLTC Drive-Cycle Experimental Performance Comparison between Single-Scroll and Twin-Scroll Turbocharger Turbine

2019-04-02
2019-01-0327
The use of twin-scroll turbocharger turbine in automotive powertrain has been known for providing better transient performance over conventional single-scroll turbine. This has been accredited to the preservation of exhaust flow energy in the twin-scroll volute. In the current study, the performance comparison between a single and twin-scroll turbine has been made experimentally on a 1.5L passenger car gasoline engine. The uniqueness of the current study is that nearly identical engine hardware has been used for both the single and twin-scroll turbine volutes. This includes the intake and exhaust manifold geometry, turbocharger compressor, turbine rotor and volute scroll A/R variation trend over circumferential location. On top of that, the steady-state engine performance with both the volutes, has also been tuned to have matching brake torque.
Journal Article

Investigation of the Influence of Different Asperity Contact Models on the Elastohydrodynamic Analysis of a Conrod Small-End/Piston Pin Coupling

2018-04-03
2018-01-0836
Bearings represent one of the main causes of friction losses in internal combustion engines, and their lubrication performance has a crucial influence on the operating condition of the engine. In particular, the conrod small-end bearing is one of the most critical engine parts from a tribological point of view since limited contact surfaces have to support high inertial and combustion forces. In this contribution an analysis is performed of the tribological behavior of the lubricated contact between the piston pin and the conrod small-end of a high performance motorbike engine. A mass-conserving algorithm is employed to solve the Reynolds equation based on a complementarity formulation of the cavitation problem. The analysis of the asperity contact problem is addressed in detail. A comparison between two different approaches is presented, the former based on the standard Greenwood/Tripp theory and the latter based on a complementarity formulation of the asperity contact problem.
Technical Paper

Steady-State Experimental and Meanline Study of an Asymmetric Twin-Scroll Turbine at Full and Unequal and Partial Admission Conditions

2018-04-03
2018-01-0971
The use of twin-scroll turbocharger turbines has gained popularity in recent years. The main reason is its capability of isolating and preserving pulsating exhaust flow from engine cylinders of adjacent firing order, hence enabling more efficient pulse turbocharging. Asymmetrical twin-scroll turbines have been used to realize high pressure exhaust gas recirculation (EGR) using only one scroll while designing the other scroll for optimal scavenging. This research is based on a production asymmetrical turbocharger turbine designed for a heavy duty truck engine of Daimler AG. Even though there are number of studies on symmetrical twin entry scroll performance, a comprehensive modeling tool for asymmetrical twin-scroll turbines is yet to be found. This is particularly true for a meanline model, which is often used during the turbine preliminary design stage.
Technical Paper

Adaptive Turbo Matching: Radial Turbine Design Optimization through 1D Engine Simulations with Meanline Model in-the-Loop

2018-04-03
2018-01-0974
Turbocharging has become the favored approach for downsizing internal combustion engines to reduce fuel consumption and CO2 emissions, without sacrificing performance. Matching a turbocharger to an engine requires a balance of various design variables in order to meet the desired performance. Once an initial selection of potential compressor and turbine options is made, corresponding performance maps are evaluated in 1D engine cycle simulations to down-select the best combination. This is the conventional matching procedure used in industry and is ‘passive’ since it relies on measured maps, thus only existing designs may be evaluated. In other words, turbine characteristics cannot be changed during matching so as to explore the effect of design adjustments. Instead, this paper presents an ‘adaptive’ matching methodology for the turbocharger turbine.
Technical Paper

Effects of Valve Deactivation on Thermal Efficiency in a Direct Injection Spark Ignition Engine under Dilute Conditions

2018-04-03
2018-01-0892
Reported in the current paper is a study into the cycle efficiency effects of utilising a complex valvetrain mechanism in order to generate variable in-cylinder charge motion and therefore alter the dilution tolerance of a Direct Injection Spark Ignition (DISI) engine. A Jaguar Land Rover Single Cylinder Research Engine (SCRE) was operated at a number of engine speeds and loads with the dilution fraction varied accordingly (excess air (lean), external Exhaust Gas Residuals (EGR) or some combination of both). For each engine speed, load and dilution fraction, the engine was operated with either both intake valves fully open - Dual Valve Actuation (DVA) - or one valve completely closed - Single Valve Actuation (SVA) mode. The engine was operated in DVA and SVA modes with EGR fractions up to 20% with the excess air dilution (Lambda) increased (to approximately 1.8) until combustion stability was duly compromised.
Technical Paper

The Sensitivity of Transient Response Prediction of a Turbocharged Diesel Engine to Turbine Map Extrapolation

2017-09-04
2017-24-0019
Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will continue to rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty vehicles and industrial machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model in these tools.
Technical Paper

A Flow and Loading Coefficient-Based Compressor Map Interpolation Technique for Improved Accuracy of Turbocharged Engine Simulations

2017-09-04
2017-24-0023
Internal combustion engines are routinely developed using 1D engine simulation tools. A well-known limitation is the accuracy of the turbocharger compressor and turbine sub-models, which rely on hot gas bench-measured maps to characterize performance. Such discrete map data is inherently too sparse to be used directly in simulation, and so a preprocessing algorithm interpolates and extrapolates the data to generate a wider, more densely populated map. Methods used for compressor map interpolation vary. They may be mathematical or physical in nature, but there is no unified approach, except that they typically operate on input map data in SAE format. For decades it has been common practice for turbocharger suppliers to share performance data with engine OEMs in this form. This paper describes a compressor map interpolation technique based on the nondimensional compressor flow and loading coefficients, instead of SAE-format data.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

Injector Fouling and Its Impact on Engine Emissions and Spray Characteristics in Gasoline Direct Injection Engines

2017-03-28
2017-01-0808
In Gasoline Direct Injection engines, direct exposure of the injector to the flame can cause combustion products to accumulate on the nozzle, which can result in increased particulate emissions. This research observes the impact of injector fouling on particulate emissions and the associated injector spray pattern and shows how both can be reversed by utilising fuel detergency. For this purpose multi-hole injectors were deliberately fouled in a four-cylinder test engine with two different base fuels. During a four hour injector fouling cycle particulate numbers (PN) increased by up to two orders of magnitude. The drift could be reversed by switching to a fuel blend that contained a detergent additive. In addition, it was possible to completely avoid any PN increase, when the detergent containing fuel was used from the beginning of the test. Microscopy showed that increased injector fouling coincided with increased particulate emissions.
Technical Paper

Effects of Fuel Properties Associated with In-Cylinder Behavior on Particulate Number from a Direct Injection Gasoline Engine

2017-03-28
2017-01-1002
The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
Technical Paper

Evaluation Between Engine Stop/Start and Cylinder Deactivation Technologies Under Southeast Asia Urban Driving Condition

2017-03-28
2017-01-0986
Engine stop/start and cylinder deactivation are increasingly in use to improve fuel consumption of internal combustion engine in passenger cars. The stop/start technology switches off the engine to whenever the vehicle is at a stand-still, typically in a highly-congested area of an urban driving. The inherent issue with the implementation of stop/start technology in Southeast Asia, with tropical climate such as Malaysia, is the constant demand for the air-conditioning system. This inevitably reduces the duration of engine switch-off when the vehicle at stop and consequently nullifying the benefit of the stop/start system. On the other hand, cylinder deactivation technology improves the fuel consumption at certain conditions during low to medium vehicle speeds, when the engine is at part load operation only. This study evaluates the fuel economy benefit between the stop/start and cylinder deactivation technologies for the actual Kuala Lumpur urban driving conditions in Malaysia.
X