Refine Your Search

Topic

Search Results

Technical Paper

Effect of Baffle Height on the in-Cylinder Air-Fuel Mixture Preparation in a Gasoline Direct Injection Engine – A Computational Fluid Dynamics Analysis

2024-04-09
2024-01-2697
In-cylinder fluid dynamics enhance performance and emission characteristics in internal combustion (IC) engines. Techniques such as helical ports, valve shrouding, masking, and modifications to piston profiles or vanes in ports are employed to achieve the desired in-cylinder flows in these engines. However, due to space constraints, modifications to the cylinder head are typically minimal. The literature suggests that introducing baffles into the combustion chamber of an IC engine can enhance in-cylinder flows, air-fuel mixing, and, subsequently, stratification. Studies have indicated that the height of the baffles plays a significant role in determining the level of improvement in in-cylinder flow and air-fuel mixing. Therefore, this study employs Computational fluid dynamics (CFD) analysis to investigate the impact of baffle height on in-cylinder flow and air-fuel mixing in a four-stroke, four-valve, spray-guided gasoline direct injection (GDI) engine.
Technical Paper

New Concept PFI-Atomizer Fueling System in a Small Single Cylinder SI Engine

2020-09-15
2020-01-2233
This paper presents results from tests using a fuel injection system which uses an ultrasonic atomizer paired with a port fuel injector (PFI). This concept was tested on a four stroke 200 cc spark-ignited two-wheeler engine. A throttle body with a PFI mounted on it was added to the air intake path of the engine, replacing the conventional carburetor. The ultrasonic disc was mounted in such a way, that the injected fuel from the PFI, falls directly on the face of the disc. The atomizer and the PFI were timed and synchronized appropriately using an Arduino® microcontroller, to promote atomization and vaporization of the fuel injected. The atomizer disc was excited using a high frequency oscillator circuit. The engine could be tested at various speeds and loads, corresponding to points which lie on the local drive duty cycle. The engine test results showed improvement in the engine exhaust emissions.
Technical Paper

Fourier Transform Infrared Spectroscopy Models to Predict Cetane Number of Different Biodiesels and Their Blends

2020-04-14
2020-01-0617
The ignition quality of a fuel is described by its cetane number. Experimental methods used to determine cetane number employ Co-operative fuel research (CFR) engine and Ignition quality tester (IQT) which are expensive, have less repeatability and require skilled operation, and hence least preferred. There are many prediction models reported, which involve number of double bonds and number of carbon atoms whose determination is not direct. Using models that relate biodiesel composition to its cetane number is limited by the range of esters involved. Hence, a model to predict cetane number of biodiesels that addresses the limitations of the existing models, without ignoring the influence of factors such as degree of unsaturation and number of carbon atoms, is needed. Fourier transform infrared spectroscopy (FTIR) could be one such method.
Technical Paper

Experimental Investigation of Combustion Stability and Particle Emission from CNG/Diesel RCCI Engine

2020-04-14
2020-01-0810
This paper presents the experimental investigation of combustion stability and nano-particle emissions from the CNG-diesel RCCI engine. A modified automotive diesel engine is used to operate in RCCI combustion mode. An open ECU is used to control the low and high reactivity fuel injection events. The engine is tested for fixed engine speed and two different engine load conditions. The tests performed for various port-injected CNG masses and diesel injection timings, including single and double diesel injection strategy. Several consecutive engine cycles are recorded using in-cylinder combustion pressure measurement system. Statistical and return map techniques are used to investigate the combustion stability in the CNG-diesel RCCI engine. Differential mobility spectrometer is used for the measurement of particle number concentration and particle-size and number distribution. It is found that advanced diesel injection timing leading to higher cyclic combustion variations.
Technical Paper

Analysis of Combustion Noise in a Small Common-Rail Direct-Injection Diesel Engine at Different Engine Operating Conditions

2020-04-14
2020-01-0419
Stringent emission regulations on one hand and increasing demand for better fuel economy along with lower noise levels on the other hand require adoption of advanced common-rail direct-injection technologies in diesel engines. In the present work, a small 0.9-l, naturally aspirated, two-cylinder, common-rail direct-injection diesel engine is used for the analysis of combustion noise at different engine operating conditions. Experiments are conducted at different loads and engine speeds, incorporating both single and multiple (i.e. pilot and main) injections along with different injection timings. In the case of multiple injections, the influence of pilot injection quantity is also evaluated on the combustion noise while maintaining the same load. In-cylinder pressure was recorded with the resolution of 0.1 crank angle degree, and it was used for the quantitative analysis of noise assessed from the resulting cylinder pressure spectra, and sound pressure level.
Technical Paper

Experimental Investigation of Multiple Injection Strategies on Combustion Stability, Performance and Emissions in a Methanol-Diesel Dual Fuel Non-Road Engine

2020-04-14
2020-01-0308
In this work methanol was port injected while diesel was injected using a common rail system in a single cylinder non-road CI engine. Experiments were conducted with single (SPI) and double (DPI - pilot and main) injection of the directly injected diesel at 75% load and at a constant speed of 1500 rpm. The effects of methanol to diesel energy share (MDES) and injection scheduling on combustion stability, efficiency and emissions were evaluated. Initially, in the SPI mode, the methanol to diesel Energy Share (MDES) was varied, while the injection timing of diesel was always fixed for best brake thermal efficiency (BTE). Increase in the MDES resulted in a reduction in NOx and smoke emissions because of the high latent heat of vaporization of methanol and the oxygen available. Enhanced premixed combustion led to a raise in brake thermal efficiency (BTE). Coefficient of variation of IMEP, peak pressure and BTE were deteriorated which limited the usable MDES to 43%.
Technical Paper

Experimental and Modeling Investigation of NO Formation Mechanism for Biodiesel and Its Blend with Methanol

2019-04-02
2019-01-0217
Biodiesel makes an attractive option to replace fossil diesel owing to its applicability in diesel engines without major modifications. An increase in NO emissions with biodiesel compared to diesel is a major concern for its wider use. Blending alcohols, such as methanol, with biodiesel is a potential remedy to mitigate NO formation, as suggested by experiments. However, computational investigations studying the effect of biodiesel-methanol blends on NO formation are scarce. A combined experimental and computational approach is adopted here to investigate the NO formation mechanism with neat biodiesel and biodiesel-methanol blend fueled light duty diesel engine. Firstly, a new compact kinetic model is utilized consisting of oxidation reactions for methyl butanoate and n-dodecane as a surrogate for biodiesel. A surrogate is defined to represent biodiesel based on a combined property and functional group based approach.
Technical Paper

Effect of Fuel Injector Location and Nozzle-Hole Orientation on Mixture Formation in a GDI Engine: A CFD Analysis

2018-04-03
2018-01-0201
Gasoline direct injection (GDI) engines have gained popularity in the recent times because of lower fuel consumption and exhaust emissions compared to that of the conventional port fuel injection (PFI) engine. But, in these engines, the mixture formation plays an important role which affects combustion, performance and emission characteristics of the engine. The mixture formation, in turn, depends on many factors of which fuel injector location and orientation are most important parameters. Therefore, in this study, an attempt has been made to understand the effect of fuel injector location and nozzle-hole orientation on the mixture formation, performance and emission characteristics of a GDI engine. The mixture stratification inside the combustion chamber is characterized by a parameter called “stratification index” which is based on average equivalence ratio at different zones in the combustion chamber.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Effect of Fuel Injection Parameters on Performance and Emission Characteristics in HCCI Engine - A CFD Study

2017-11-05
2017-32-0096
Today, homogenous charge compression ignition (HCCI) engines are becoming very popular because of their potential to reduce soot and nitric oxides (NOx) emissions simultaneously. But, their performance and emission characteristics are very much dependent upon fuel injection strategy and parameters. However, they also have many challenges viz., improper combustion phasing, high rate of pressure rise and narrow operating range. Therefore, addressing them is very essential before making them a commercial success. This study focuses on evaluating the effect of fuel injection strategy and parameters on the performance and emission characteristics of a HCCI engine by computational fluid dynamics (CFD) analysis. In this study, a four-stroke engine operating in the HCCI mode is considered and the CFD analysis is carried out by using the CONVERGE.
Technical Paper

Near Nozzle Flow and Atomization Characteristics of Biodiesel Fuels

2017-10-08
2017-01-2327
Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigated near nozzle flow and atomization characteristics of biodiesel fuels in a constant volume chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of conventional diesel fuel. The tested fuels were injected by a solenoid injector with a common-rail injection system. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow. Meanwhile, Sauter mean diameter (SMD) was measured by a phase Doppler particle analyzer to compare atomization characteristics.
Technical Paper

A Composition Based Approach for Predicting Performance and Emission Characteristics of Biodiesel Fuelled Engine

2017-10-08
2017-01-2340
Biodiesel is a renewable, carbon neutral alternative fuel to diesel for compression ignition engine applications. Biodiesel could be produced from a large variety of feedstocks including vegetable oils, animal fats, algae, etc. and thus, vary significantly in their composition, fuel properties and thereby, engine characteristics. In the present work, the effects of biodiesel compositional variations on engine characteristics are captured using a multi-linear regression model incorporated with two new biodiesel composition based parameters, viz. straight chain saturation factor (SCSF) and modified degree of unsaturation (DUm). For this purpose, biodiesel produced from seven vegetable oils having significantly different compositions are tested in a single cylinder diesel engine at varying loads and injection timings. The regression model is formulated using 35 measured data points and is validated with 15 other data points which are not used for formulation.
Technical Paper

Tomographic PIV Evaluation of In-Cylinder Flow Evolution and Effect of Engine Speed

2016-04-05
2016-01-0638
In this study, 3D air-flow-field evolution in a single cylinder optical research engine was determined using tomographic particle imaging velocimetry (TPIV) at different engine speeds. Two directional projections of captured flow-field were pre-processed to reconstruct the 3D flow-field by using the MART (multiplicative algebraic reconstruction technique) algorithm. Ensemble average flow pattern was used to investigate the air-flow behavior inside the combustion chamber during the intake and compression strokes of an engine cycle. In-cylinder air-flow characteristics were significantly affected by the engine speed. Experimental results showed that high velocities generated during the first half of the intake stroke dissipated in later stages of the intake stroke. In-cylinder flow visualization indicated that large part of flow energy dissipated during the intake stroke and energy dissipation was the maximum near the end of the intake stroke.
Technical Paper

An Experimental Study of Microscopic Spray Characteristics of a GDI Injector Using Phase Doppler Interferometry

2016-02-01
2016-28-0006
Gasoline Direct Injection (GDI) engine is known for its higher power and higher thermal efficiency. Researchers are steadily determining and resolving the problems of fuel injection in a GDI engine. In order to meet the stringent emission norms such as PM and NOx emitted by a GDI engine, it is necessary to investigate the microscopic spray characteristics and fuel-air mixing process. This paper aims to share the fundamental knowledge of the interacting mixture preparation mechanisms at the wide range of fuel injection pressures. The investigations were carried out at five different fuel injection pressures viz: 40, 80, 120, 160, 200 bar, for 24 mg fuel per injection. A high speed CCD camera was used to determine the macroscopic spray characteristics of the GDI injector. It was found that spray penetration length increased with increasing fuel injection pressure. Phase Doppler Interferometry (PDI) was used to determine the droplet size and droplet velocity for different test fuels.
Technical Paper

In-Cylinder Air-Flow Characteristics Using Tomographic PIV at Different Engine Speeds, Intake Air Temperatures and Intake Valve Deactivation in a Single Cylinder Optical Research Engine

2016-02-01
2016-28-0001
Fuel-air mixing is the main parameter, which affects formation of NOx and PM during CI combustion. Hence better understanding of air-flow characteristics inside the combustion chamber of a diesel engine became very important. In this study, in-cylinder air-flow characteristics of four-valve diesel engine were investigated using time-resolved high-speed tomographic Particle Imaging Velocimetry (PIV). For visualization of air-flow pattern, fine graphite particles were used for flow seeding. To investigate the effect of different operating parameters, experiments were performed at different engine speeds (1200 rpm and 1500 rpm), intake air temperatures (room temperature and 50°C) and intake port configurations (swirl port, tangential port and combined port). Intake air temperature was controlled by a closed loop temperature controller and intake ports were deactivated by using a customized aluminum gasket.
Technical Paper

Reducing NO in a Biodiesel Fueled Compression Ignition Engine - An Experimental Study

2015-09-06
2015-24-2483
The replacement of fossil diesel with neat biodiesel in a compression ignition engine has advantage in lowering unburned hydrocarbon, carbon monoxide and smoke emissions. However, the injection advance experienced with biodiesel fuel with respect to diesel injection setting increases oxides of nitrogen emission. In this study, the biodiesel-NO control is attempted using charge and fuel modification strategies with retarded injection timing. The experiments are performed at maximum torque speed and higher loads viz. from 60% up to full load conditions maintaining same power between diesel and biodiesel while retarding the timing of injection by 3 deg. crank angle. The charge and fuel modifications are done by recycling 5% by volume of exhaust gas to the fresh charge and 10% by volume of methanol to Karanja biodiesel.
Journal Article

Tomographic Particle Image Velocimetry for Flow Analysis in a Single Cylinder Optical Engine

2015-04-14
2015-01-0599
Better understanding of flow phenomena inside the combustion chamber of a diesel engine and accurate measurement of flow parameters is necessary for engine optimization i.e. enhancing power output, fuel economy improvement and emissions control. Airflow structures developed inside the engine combustion chamber significantly influence the air-fuel mixing. In this study, in-cylinder air flow characteristics of a motored, four-valve diesel engine were investigated using time-resolved high-speed Tomographic Particle Imaging Velocimetry (PIV). Single cylinder optical engine provides full optical access of combustion chamber through a transparent cylinder and flat transparent piston top. Experiments were performed in different vertical planes at different engine speeds during the intake and compression stroke under motoring condition. For visualization of air flow pattern, graphite particles were used for flow seeding.
Technical Paper

Study on Effect of Engine Operating Parameters on Flame Characteristics

2015-04-14
2015-01-0749
In gasoline direct injection (GDI) engines, air-fuel mixture homogeneity plays a major role on engine performance, especially in combustion and emission characteristics. The performance of the engine largely depends on various engine operating parameters viz., start of injection, duration of injection and spark timing. In order to achieve faster results CFD is becoming a handy tool to optimize and understand the effect of these parameters. Therefore, this study aims on evaluating the two injection parameters viz., single and split injection to evaluate different flame characteristics. Novelty in this study is to define five different parameters which are called α, β, γ, δ and η the details of which are explained in the paper. In order to understand the flame characteristics, these five parameters are found to be very useful. In the present study, a single-cylinder, two-valve, four- stroke engine which is used in two-wheelers in India is considered for carrying out the CFD analysis.
Technical Paper

Unregulated and Regulated Emissions from Biodiesel Fuelled CRDI SUV Engine

2015-04-14
2015-01-0889
Use of biodiesel from non-edible vegetable oil as an alternative fuel to mineral diesel is attractive economically and environmentally. Diesel engines emit several harmful gaseous emissions and some of them are regulated worldwide, while countless others are not regulated. These unregulated species are associated with severe health hazards. Karanja biodiesel is a popular alternate fuel in South Asia and various governments are considering its large-scale implementation. Therefore it is important to study the possible adverse impact of this new alternate fuel. In this study, unregulated and regulated emissions were measured at varying engine speeds (1500, 2500 and 3500 rpm) for various engine loads (0%, 20%, 40%, 60%, 80% and 100% rated load) using 20% Karanja biodiesel blend (KB20) and diesel in a 4-cylinder 2.2L common rail direct injection (CRDI) sports utility vehicle (SUV) engine.
Technical Paper

Transient Spray Characteristics of Air Assisted Fuel Injection

2015-04-14
2015-01-0920
Gasoline direct injection (GDI) technology is already in use in four wheeler applications owing to the additional benefits in terms of better combustion and fuel economy. The air-assisted in-cylinder injection is the emerging technology for gasoline engines which works with low pressure injection systems unlike gasoline direct injection (GDI) system. GDI systems use high pressure fuel injection, which provides better combustion and reduced fuel consumption. It envisages small droplet size and low penetration rate which will reduce wall wetting and hydrocarbon emissions. This study is concerned with a CFD analysis of an air-assisted injection system to evaluate mixture spray characteristics. For the analysis, the air injector fitted onto a constant volume chamber (CVC) maintained at uniform pressure is considered. The analysis is carried out for various CVC pressures, mixture injection durations and fuel quantities so as to understand the effect on mixture spray characteristics.
X