Refine Your Search

Topic

Author

Search Results

Technical Paper

Strategies to Reduce Higher Unburned Hydrocarbon and Carbon Monoxide Emissions in Reactivity Controlled Compression Ignition

2024-04-09
2024-01-2360
Reactivity Controlled Compression Ignition (RCCI) is a promising, high-efficiency, clean combustion mode for diesel engines. One of the significant limitations of RCCI is its higher unburned hydrocarbon (HC) and carbon monoxide (CO) emissions compared to conventional diesel combustion. After-treatment control of HC and CO emissions is difficult to achieve in RCCI because of lower exhaust gas temperatures associated with the low-temperature combustion (LTC) mode of operation. The present study involves combined experimental and computational fluid dynamic (CFD) investigations to develop the most effective HC and CO control strategy for RCCI. A production light-duty diesel engine is modified to run in RCCI mode by introducing electronic port fuel injection with the replacement of mechanical injectors by the CRDI system. Experimental data were obtained using diesel as HRF (High reactive fuel) and gasoline as LRF (low reactive fuel).
Technical Paper

Enhancement of Polycrystalline Silicon Solar Cell’s Efficiency through Electrospinning Coating Using Erbium Oxide

2024-02-23
2023-01-5163
The current research focuses on enhancing the performance of Si solar cells by using Er2O3 (Erbium Oxide) in cubic crystalline nature serves as an anti-reflection coating material. An anti-reflective coating aims to improve the Efficient Power Conversion (EPC) of polycrystalline silicon wafers solar cells (PSSC) utilised in solar roof panels of the automotive sector. It also exhibits superior light transmittance and least light reflectance, which eventually leads to the increase EPC. Erbium oxide helps to convert low energy photons into high energy photons. The incident photons, which lies on the solar cell, gradually losses its energy to travel in a denser medium and dissipate in the form of heat energy. In order to overcome the rate of reflection, current research aims in synthesis of erbium oxide nanosheets using electrospinning deposition technique for varying deposition timings such as 1, 1.5 and 2 hours.
Technical Paper

Investigations on a Novel Supercharging and Impulse Turbo-Compounding of a Single Cylinder Diesel Engine

2022-08-30
2022-01-1111
Single-cylinder engines in mass production are generally not turbocharged due to the pulsated and intermittent exhaust gas flow into the turbocharger and the phase lag between the intake and exhaust stroke. The present work proposes a novel approach of decoupling the turbine and the compressor and coupling them separately to the engine to address these limitations. An impulse turbine is chosen for this application to extract energy during the pulsated exhaust flow. Commercially available AVL BOOST software was used to estimate the overall engine performance improvement of the proposed novel approach compared to the base naturally aspirated (NA) engine. Two different impulse turbine layouts were analyzed, one without an exhaust plenum and the second layout having an exhaust plenum before the power turbine. The merits and limitations of both layouts are compared in the present study.
Technical Paper

Parametric Investigation of Various Factors Affecting Engine Performance and Emissions in a Homogeneous Charge with Direct Injection Strategy at High Load: A CFD Approach

2022-08-30
2022-01-1048
Over the years, much progress has been made in automotive vehicle technology to achieve high efficiency and clean combustion. Reactivity controlled compression ignition (RCCI) is one of the most widely studied high-efficiency, clean combustion strategies. However, complex dual-fuel injection systems and associated controls, high unburned hydrocarbon (UHC), and carbon monoxide (CO) emissions limit RCCI use in practical applications. Recently, single fuel RCCI strategies are gaining more attention as the above shortcomings are effectively addressed. Homogeneous charge with direct injection (HCDI) is a single fuel RCCI strategy that results in high thermal efficiency and lower UHC and CO emissions. In HCDI, the port-injected diesel fuel vapour and air are inducted during the intake stroke and ignited with direct-injected diesel fuel near the end of the compression stroke. However, high oxides of nitrogen (NOx) make HCDI less viable for practical applications.
Technical Paper

A Comparison of Different Warm-up Technologies on Transient Emission Characteristics of a Low-Compression Ratio Light-duty Diesel Engine

2022-03-29
2022-01-0482
It is well established that reducing the compression ratio (CR) of a diesel engine leads to a significant increase in hydrocarbon (HC) and carbon monoxide (CO) emissions, especially in cold and transient conditions. Hence, it is essential to find new strategies to reduce the HC and CO emissions of a low compression ratio (LCR) diesel engine in transient conditions. In the present work, a detailed evaluation of different warm-up technologies was conducted for their effects on transient emissions characteristics of a single-cylinder naturally aspirated LCR diesel engine. For this purpose, the engine was coupled to an instrumented transient engine dynamometer setup. A transient cycle of 160 seconds with starting, idling, speed ramp-up and load ramp-up was defined, and the engine was run in automatic mode by the dynamometer. The experiments were conducted by overnight soaking the engine at a specified temperature of 25 deg.C.
Technical Paper

Investigations on a Homogenous Charge Compression Ignition Engine Operated with Biodiesel and its Emulsions with Water

2022-03-29
2022-01-0515
The carbon-neutral biodiesel is a promising renewable substitute for fossil diesel that renders the traditional oxides of nitrogen-particulate matter (NOx-PM) trade-off into a unidirectional NOx control problem. Low-temperature combustion (LTC) modes such as homogenous charge compression ignition (HCCI) are attractive for obtaining ultra-low NOx and PM emissions. Studies on utilizing biodiesel fuel for HCCI combustion mode are sparsely available. Moreover, biodiesel emulsions in the HCCI combustion mode have not been attempted so far. Based on this premise, the present work explored the potential to utilize biodiesel and its emulsions having 20% and 25% water by volume under HCCI operating conditions. Biodiesel was prepared from a non-edible Karanja oil. The biodiesel emulsions were prepared using a heated magnetic stirrer apparatus with 3% by volume of the raw Karanja oil as a surfactant.
Technical Paper

Experimental Investigation on Reactivity Controlled Compression Ignition with Oxygenated Alternative Fuel Blends to Reduce Unburned Hydrocarbon Emissions

2021-09-21
2021-01-1203
For controlling oxides of nitrogen (NOx) and particular matter (PM) emissions from diesel engines, various fuel and combustion mode modification strategies are investigated in the past. Low temperature combustion (LTC) is an alternative combustion strategy that reduces NOx and PM emissions through premixed lean combustion. Dual fuel reactivity-controlled compression ignition (RCCI) is a promising LTC strategy with better control over the start and end of combustion because of reactivity and equivalence ratio stratification. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are significantly higher in RCCI, especially at part-load conditions. The present work intends to address this shortcoming by utilizing oxygenated alternative fuels. Considering the limited availability and higher cost, replacing conventional fuels completely with alternative fuels is not feasible.
Technical Paper

Experimental Investigations on the Effects of Water Injection in a Light-Duty Diesel Engine Operated with Biodiesel Fuel

2021-09-21
2021-01-1207
In-cylinder emission control methods for simultaneous reduction of oxides of nitrogen (NOx) and particulate matter (PM) are gaining attention due to stringent emission targets and the higher cost of after-treatment systems. In addition, there is a renewed interest in using carbon-neutral biodiesel due to global warming concerns with fossil diesel. The bi-directional NOx-PM trade-off is reduced to a unidirectional higher NOx emission problem with biodiesel. The effect of water injection with biodiesel with low water quantities is relatively unexplored and is attempted in this investigation to mitigate higher NOx emissions. The water concentrations are maintained at 3, 6, and 9% relative to fuel mass by varying the pulse width of a low-pressure port fuel injector. Considering the corrosive effects of water at higher concentrations, they are maintained below 10% in the present work.
Technical Paper

Evaporation Characteristics of Fuels for Low Temperature Combustion Engine Applications

2021-09-21
2021-01-1210
The research on reducing emissions from automotive engines through modifications in the combustion mode and the fuel type is gaining momentum because of the increasing contribution to global warming by the transportation sector. The combustion and emission formation in the advanced low temperature combustion (LTC) engine strategies are susceptible to fuel molecular composition and properties. Ignition timing in LTC strategies is primarily controlled by fuel composition and associated chemical kinetics. Thus, tailoring of fuel properties is required to address the limitations of LTC in terms of lack of control on ignition timing and narrow engine operating load range. Utilizing fuel blends and additives such as nanoparticles is a promising approach to achieving targeted fuel property. An improved understanding of fundamental processes, including fuel evaporation, is required due to its role in fuel-air mixing and emission formation in LTC.
Technical Paper

Homogeneous Charge with Direct Multi-Pulse Injection - A Promising High Efficiency and Clean Combustion Strategy for Diesel Engines

2021-09-21
2021-01-1156
Extensive experimental investigations done over a decade in different engine types demonstrated the capability of achieving high efficiency along with low levels of oxides of nitrogen (NOx) and soot emissions with low temperature combustion (LTC) modes. However, the commercial application of LTC strategies requires several challenges to be addressed, including precise ignition timing control, reducing higher unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions. The lower exhaust gas temperatures with LTC operation pose severe challenges for after-treatment control systems. Among the available LTC strategies, Reactivity Controlled Compression Ignition (RCCI) has emerged as the most promising strategy due to better ignition timing control with higher thermal efficiency. Nevertheless, the complexity of engine system hardware due to the dual fuel injection system and associated controls, high HC and CO emissions are the major limiting factors in RCCI.
Technical Paper

Effect of Injection Parameters on the Premixed Charge Compression Ignition Combustion in a Small-Bore Light Duty Diesel Engine - A CFD Study

2021-09-21
2021-01-1174
Premixed charged compression ignition (PCCI) is a promising low temperature combustion strategy for achieving a simultaneous reduction of oxides of nitrogen (NOx) and soot emissions in diesel engines. However, early direct injection results in a significant penalty in fuel economy, high unburned hydrocarbon (HC), and carbon monoxide (CO) emissions, especially in small-bore diesel engines. In the present work, computational fluid dynamic (CFD) investigations are carried out in a small-bore diesel engine using a commercial CFD software, CONVERGE. The computational models are validated with experimental results at two different load conditions, 20% and 40% of rated load. The validated models are used to carry out parametric investigations on the effects of fuel injection parameters, namely the start of fuel injection timing, injection pressure, and spray cone angle on PCCI combustion.
Technical Paper

Investigations on NOx and Smoke Emissions Reduction Potential through Water-in-Diesel Emulsion and Water Fumigation in a Small-Bore Diesel Engine

2020-11-30
2020-32-2312
In the present work, a relative comparison of addition of water to diesel through emulsion and fumigation methods is explored for reducing oxides of nitrogen (NOx) and smoke emissions in a production small bore diesel engine. The ratio of water to diesel was kept the same in both the methods at a lower concentration of 3% by mass to avoid any adverse effects on the engine system components. The experiments were conducted at a rated engine speed of 1500 rpm under varying load conditions. For engine studies using emulsion fuels, kinetically stable water-in-diesel nanoemulsions were prepared with 3% water concentration by mass of the total sample. The emulsion fuels formulated using commercial surfactants were transparent in appearance. The droplet size of the nanoemulsions was characterized using dynamic light scattering technique.
Technical Paper

Controlling the Performance of Copper-Free Brake-Pads by Varying Size of Graphite Particles

2020-10-05
2020-01-1604
Graphite plays a crucial role in friction materials, since it has good thermal conductivity, lubricity and act as a friction modifier. The right type, amount, shape, and size of the particles control the performance of the brake-pads. The theme of the study was investigating the influence of size of graphite particles (having all other specifications identical) on performance properties of brake-pads containing graphite particles in the average size of 60 μm, 120 μm, 200 μm and 400 μm. Physical, mechanical and chemical characterization of the developed brake-pads was done. The tribological performance was studied using a full- scale inertia brake dynamometer following a Japanese automobile testing standard (JASO C406). Tribo-performance in terms of fade resistance, friction stability and wear resistance were observed best for smaller graphite particles. It was concluded that smaller size serves best for achieving best performance properties barring compressibility.
Technical Paper

New Concept PFI-Atomizer Fueling System in a Small Single Cylinder SI Engine

2020-09-15
2020-01-2233
This paper presents results from tests using a fuel injection system which uses an ultrasonic atomizer paired with a port fuel injector (PFI). This concept was tested on a four stroke 200 cc spark-ignited two-wheeler engine. A throttle body with a PFI mounted on it was added to the air intake path of the engine, replacing the conventional carburetor. The ultrasonic disc was mounted in such a way, that the injected fuel from the PFI, falls directly on the face of the disc. The atomizer and the PFI were timed and synchronized appropriately using an Arduino® microcontroller, to promote atomization and vaporization of the fuel injected. The atomizer disc was excited using a high frequency oscillator circuit. The engine could be tested at various speeds and loads, corresponding to points which lie on the local drive duty cycle. The engine test results showed improvement in the engine exhaust emissions.
Technical Paper

A Holistic Approach to Develop a Common Rail Single Cylinder Diesel Engine for Bharat Stage VI Emission Legislation

2020-04-14
2020-01-1357
The upcoming Bharat Stage VI (BS VI) emission legislation has put enormous pressure on the future of small diesel engines which are widely used in the Indian market. The present work investigates the emission reduction potential of a common rail direct injection single cylinder diesel engine by adopting a holistic approach of lowering the compression ratio, boosting the intake air and down-speeding the engine. Experimental investigations were conducted across the entire operating map of a mass-production, light-duty diesel engine to examine the benefits of the proposed approach and the results are quantified for the modified Indian drive cycle (MIDC). By reducing the compression ratio from 18:1 to 14:1, the oxides of nitrogen (NOx) and soot emissions are reduced by 40% and 75% respectively. However, a significant penalty in fuel economy, unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are observed with the reduced compression ratio.
Technical Paper

Experimental Investigation of Combustion Stability and Particle Emission from CNG/Diesel RCCI Engine

2020-04-14
2020-01-0810
This paper presents the experimental investigation of combustion stability and nano-particle emissions from the CNG-diesel RCCI engine. A modified automotive diesel engine is used to operate in RCCI combustion mode. An open ECU is used to control the low and high reactivity fuel injection events. The engine is tested for fixed engine speed and two different engine load conditions. The tests performed for various port-injected CNG masses and diesel injection timings, including single and double diesel injection strategy. Several consecutive engine cycles are recorded using in-cylinder combustion pressure measurement system. Statistical and return map techniques are used to investigate the combustion stability in the CNG-diesel RCCI engine. Differential mobility spectrometer is used for the measurement of particle number concentration and particle-size and number distribution. It is found that advanced diesel injection timing leading to higher cyclic combustion variations.
Technical Paper

A Computational Study on the Effect of Injector Location on the Performance of a Small Spark-Ignition Engine Modified to Operate under the Direct-Injection Mode

2020-04-14
2020-01-0286
In a direct-injection (DI) engine, charge motion and mixture preparation are among the most important factors deciding the performance and emissions. This work was focused on studying the effect of injector positioning on fuel-air mixture preparation and fuel impingement on in-cylinder surfaces during the homogeneous mode of operation in a naturally aspirated, small bore, 0.2 l, light-duty, air-cooled, four-stroke, spark-ignition engine modified to operate under the DI mode. A commercially available, six-hole, solenoid-operated injector was used. Two injector locations were identified based on the availability of the space on the cylinder head. One location yielded the spray-guided (SG) configuration, with one of the spray plumes targeted towards the spark plug. In the second location, the spray plumes were targeted towards the piston top in a wall-guided (WG) configuration so as to minimize the impingement of fuel on the liner.
Technical Paper

Experimental Investigation of Multiple Injection Strategies on Combustion Stability, Performance and Emissions in a Methanol-Diesel Dual Fuel Non-Road Engine

2020-04-14
2020-01-0308
In this work methanol was port injected while diesel was injected using a common rail system in a single cylinder non-road CI engine. Experiments were conducted with single (SPI) and double (DPI - pilot and main) injection of the directly injected diesel at 75% load and at a constant speed of 1500 rpm. The effects of methanol to diesel energy share (MDES) and injection scheduling on combustion stability, efficiency and emissions were evaluated. Initially, in the SPI mode, the methanol to diesel Energy Share (MDES) was varied, while the injection timing of diesel was always fixed for best brake thermal efficiency (BTE). Increase in the MDES resulted in a reduction in NOx and smoke emissions because of the high latent heat of vaporization of methanol and the oxygen available. Enhanced premixed combustion led to a raise in brake thermal efficiency (BTE). Coefficient of variation of IMEP, peak pressure and BTE were deteriorated which limited the usable MDES to 43%.
Technical Paper

Development of a Standalone Application in MATLAB to Generate Brake Performance Data

2019-04-02
2019-01-0513
Predicting the brake performance and characteristics is a crucial task in the vehicle development activity. Performance prediction is a challenge because of the involvement of various parts in the brake assembly like booster, master cylinder, calipers, disc and drum brakes. Determination of these characteristics through vehicle level tests requires a lot of time and money. This performance prediction is achieved by theoretical calculations involving vehicle dynamics. The final output must satisfy the regulations. This project involves the creation of a standalone application using MATLAB to predict the various brake performances such as: booster characteristics, adhesion curves, deceleration and pedal effort curves, behavior of brakes during brake and booster failed conditions and braking force diagrams based on the given user inputs. Previously, MS Excel and an application developed in the TK Solver environment was used to predict the brake performance curves.
Technical Paper

Effects of Compression Ratio and Water Vapor Induction on the Achievable Load Limits of a Light Duty Diesel Engine Operated in HCCI Mode

2019-04-02
2019-01-0962
Among the various Low Temperature Combustion (LTC) strategies, Homogeneous Charge Compression Ignition (HCCI) is most promising to achieve near zero oxides of nitrogen (NOx) and particulate matter emissions owing to higher degree of homogeneity and elimination of diffusion phase combustion. However, one of its major limitations include a very narrow operating load range owing to misfire at low loads and knocking at high loads. Implementing HCCI in small light duty air cooled diesel engines pose challenges to eliminate misfire and knocking problems owing to lower power output and air cooled operation, respectively. In the present work, experimental investigations are done in HCCI mode in one such light duty production diesel engine most widely used in agricultural water pumping applications. An external mixture preparation based diesel HCCI is implemented in the test engine by utilizing a high-pressure port fuel injection system, a fuel vaporizer and an air preheater.
X