Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

NOx Mitigation Strategy for Oxidized Biodiesel in a Heavy-Duty Truck Diesel Engine

2022-08-30
2022-01-1084
Unsaturated methyl esters in biodiesel make it susceptible to oxidation and fuel quality degradation upon long-term storage. It is almost impossible to use biodiesel for commercial applications immediately after production. The lead time between biodiesel production and usage is generally high, causing auto-oxidation and fuel quality degradation. Hence any onsite improvement in fuel quality should be tested with aged biodiesel. To avoid the food versus fuel debate, non-edible oil feedstocks are preferable for producing biodiesel. However, biodiesel from non-edible oil sources has more unsaturated methyl ester constituents. The traditional trade-off between oxides of nitrogen (NOx) and soot emissions in conventional diesel combustion is reduced to a more severe NOx problem with biodiesel. In the present study, NOx mitigation through fuel modifications is studied for oxidized biodiesel produced from a non-edible oil, Karanja.
Technical Paper

Parametric Investigation of Various Factors Affecting Engine Performance and Emissions in a Homogeneous Charge with Direct Injection Strategy at High Load: A CFD Approach

2022-08-30
2022-01-1048
Over the years, much progress has been made in automotive vehicle technology to achieve high efficiency and clean combustion. Reactivity controlled compression ignition (RCCI) is one of the most widely studied high-efficiency, clean combustion strategies. However, complex dual-fuel injection systems and associated controls, high unburned hydrocarbon (UHC), and carbon monoxide (CO) emissions limit RCCI use in practical applications. Recently, single fuel RCCI strategies are gaining more attention as the above shortcomings are effectively addressed. Homogeneous charge with direct injection (HCDI) is a single fuel RCCI strategy that results in high thermal efficiency and lower UHC and CO emissions. In HCDI, the port-injected diesel fuel vapour and air are inducted during the intake stroke and ignited with direct-injected diesel fuel near the end of the compression stroke. However, high oxides of nitrogen (NOx) make HCDI less viable for practical applications.
Technical Paper

Numerical Investigations on Split Injection Strategies to Reduce CO and Soot Emissions of a Light-Duty Small-Bore Diesel Engine Operated in NADI-PCCI Mode

2022-03-29
2022-01-0458
Premixed Charge Compression Ignition (PCCI) is a promising LTC strategy to reduce NOx and soot emissions without relying on after-treatment devices. One major drawback of PCCI is high HC and CO emissions resulting from fuel-wall impingement due to early injection of diesel. Narrow-angle direct injection (NADI) helps reduce the wall wetting of fuel. But it is effective only at lower loads. At mid and higher loads, it increases soot and CO emissions in small-bore engines due to the formation of fuel-rich pockets in the piston bowl region. This problem is addressed using a split injection strategy in the present work. A 3-D CFD model is developed and validated with experimental data at two load conditions. Simulations are performed using CONVERGE CFD software. Split injection strategies are explored using wide (148 deg) and narrow (88 deg) spray included angles.
Technical Paper

Evaluation of Low-Pressure EGR System on NOx Reduction Potential of a Supercharged LCR Single-Cylinder Diesel Engine

2022-03-29
2022-01-0447
Supercharging a single-cylinder diesel engine has proved to be a viable methodology to reduce engine-out emissions and increase full-load torque and power. The increased air availability of the supercharger (SC) system helps to inject more fuel quantity that can improve the engine's full-load brake mean effective pressure (BMEP) without elevating soot emissions. However, the increased inlet temperature of the boosted air and the availability of excess oxygen can pose significant challenges to contain oxides of nitrogen (NOx) emissions. Hence, it is important to investigate the potential NOx reduction options in supercharged diesel engines. In the present work, the potential of low-pressure exhaust gas recirculation (LP EGR) was evaluated in a single-cylinder supercharged diesel engine for its benefits in NOx emission reduction and impact on other criteria emissions and brake specific fuel consumption (BSFC).
Technical Paper

Effects of Oxidation Upon Long-term Storage of Karanja Biodiesel on the Combustion and Emission Characteristics of a Heavy-Duty Truck Diesel Engine

2021-09-21
2021-01-1200
The presence of unsaturated methyl esters in biodiesel makes it susceptible to oxidation and fuel quality degradation upon long-term storage. In the present work, the effects of oxidation of Karanja biodiesel upon long-term storage on the combustion and emission characteristics of a heavy-duty truck diesel engine are studied. The Karanja biodiesel is stored for one year in a 200 litres steel barrel at room conditions to mimic commercial storage conditions. The results obtained show that compared to diesel, the start of injection of fresh and aged biodiesels are advanced by ~2-degree crank angle, and the ignition delay time is reduced. Aged biodiesel showed a slightly smaller ignition delay compares to fresh biodiesel. The fuel injection and combustion characteristics of fresh and aged biodiesels were similar at all the load conditions. Both fresh and aged biodiesels produced higher oxides of nitrogen (NOx) and lower smoke emissions compared to diesel.
Technical Paper

Experimental Investigations on the Effects of Water Injection in a Light-Duty Diesel Engine Operated with Biodiesel Fuel

2021-09-21
2021-01-1207
In-cylinder emission control methods for simultaneous reduction of oxides of nitrogen (NOx) and particulate matter (PM) are gaining attention due to stringent emission targets and the higher cost of after-treatment systems. In addition, there is a renewed interest in using carbon-neutral biodiesel due to global warming concerns with fossil diesel. The bi-directional NOx-PM trade-off is reduced to a unidirectional higher NOx emission problem with biodiesel. The effect of water injection with biodiesel with low water quantities is relatively unexplored and is attempted in this investigation to mitigate higher NOx emissions. The water concentrations are maintained at 3, 6, and 9% relative to fuel mass by varying the pulse width of a low-pressure port fuel injector. Considering the corrosive effects of water at higher concentrations, they are maintained below 10% in the present work.
Technical Paper

Experimental Investigations on the Effects of Multiple Injections in Reactivity-Controlled Compression Ignition in a Light-Duty Engine Operated with Gasoline/Diesel

2020-09-25
2020-01-5072
Reactivity-Controlled Compression Ignition (RCCI) is a promising low-temperature combustion (LTC) strategy to mitigate the oxides of nitrogen (NOx) and soot emissions. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are much higher in RCCI compared to the conventional diesel combustion (CDC). In this present work, multiple injections of the direct-injected (DI) diesel fuel are explored as a potential method to reduce the high HC and CO emissions. Although significant research works have been done in the past on RCCI combustion in different engine types, investigations on small air-cooled diesel engines are very limited. In the present work, a production light-duty air-cooled diesel engine is modified to run in RCCI, with diesel as the high-reactivity fuel and gasoline as the low-reactivity fuel. Before modifications, the engine is run in CDC with production settings. In RCCI, experiments are initially performed with single-pulse DI.
Technical Paper

Assessment of Numerical Cold Flow Testing of Gas Turbine Combustor through an Integrated Approach Using Rapid Prototyping and Water Tunnel

2019-10-11
2019-28-0051
In the present work, it is aimed at developing an integrated approach for combustor modeling involving rapid prototyping and water tunnel testing to assess the cold flow numerical simulations; the physical model will be subjected to cold flow visualization and parametric studies and CFD analysis to demonstrate its capability for undergoing rigorous cold flow testing. A straight through annular combustors is chosen for the present study because of it has low pressure drop, less weight and used widely in modern day aviation engines. Numerical Analysis has been performed using ANSYS-FLUENT. Three dimensional RANS equations are solved using k-ɛ model for the Reynolds numbers ranging from 0.64 x 105-1.5 x 105 based on the annulus diameter. Post processing the results is done in terms of jet penetration, formation of recirculation zone, effective mixing, flow split and pressure drop for different cases.
Technical Paper

Phenomenological Modeling and Experiments to Investigate the Combined Effects of High Pressure and Multiple Injection Strategies with EGR on Combustion and Emission Characteristics of a CRDI Diesel Engine

2019-01-15
2019-01-0056
Nowadays, due to stringent emission regulations, it is imperative to incorporate modeling efforts with experiments. This paper presents the development of a phenomenological model to investigate the effects of various in-cylinder strategies on combustion and emission characteristics of a common-rail direct-injection (CRDI) diesel engine. Experiments were conducted on a single-cylinder, supercharged engine with displacement volume of 0.55 l at different operating conditions with various combinations of injection pressure, number of injections involving single injection and multiple injections with two injection pulses, and EGR. Data obtained from experiments was also used for model validation. The model incorporated detailed phenomenological aspects of spray growth, air entrainment, droplet evaporation, wall impingement, ignition delay, premixed and mixing-controlled combustion rates, and emissions of nitrogen oxides (NOx) and diesel soot.
Technical Paper

Parametric Study on a Gasoline Direct Injection Engine - A CFD Analysis

2017-01-10
2017-26-0039
Gasoline direct injection (GDI) engines are now trending in automobile field because of good fuel economy and low exhaust emissions over their port fuel injection (PFI) counter parts. They operate with a lean stratified mixture in most of conditions. However, their performance is dependent on mixture stratification which in-turn depends on fuel injection pressure, timing and strategy. But, the main challenge to GDI engines is soot and particulate matter (PM) emissions. However, they can be reduced by employing multi-stage fuel injection strategy. Therefore, in the present work, an effort has been made to study the effect of fuel injection parameters on soot emissions of a GDI engine using the CFD analysis. In addition, the study is also extended to evaluate the performance, combustion and other emission characteristics of the engine. First the engine is modelled using the PRO-E software. The geometrical details of the engine are obtained from the literature.
Technical Paper

Numerical and Experimental Investigation of Residual Stresses in Cold Formed Truck Frame Rail Sections

2013-11-27
2013-01-2796
Cold formed carbon steel C sections are often employed as load carrying structural members in heavy commercial trucks. The cold forming operations employed during the making of these members generate certain amount of residual stresses throughout the sections. As the residual stresses play a significant role in determining the structural behavior of truck frame rail members, a careful assessment of residual stresses resulting from cold forming operation is needed. In the present investigation, residual stresses in frame rail corner sections were numerically predicted with the help of non-linear Finite Element (FE) analysis in ABAQUS and compared with the experimentally measured residual stress values using X-ray diffraction technique. It has been observed that the numerically predicted residual stresses are in agreement with the experimentally measured residual stresses in forming direction.
Technical Paper

CFD Prediction of Combustion on Direct Injection Diesel Engine with Two Different Combustion Chamber Configurations

2013-11-27
2013-01-2804
Direct injection diesel engines are used in both light duty and heavy duty vehicles because of higher thermal efficiency compared to SI engines. However, due to only short time available for fuel-air mixing, combustion process depends on proper mixing. As a result, DI Diesel engine emits more NOx and soot into the atmosphere. Therefore, to achieve better combustion with less emission and also to accelerate the fuel-air mixing to improve the combustion, appropriate design of combustion chamber is crucial. Hence, in this work a study has been carried out using CFD to evaluate the effect of combustion chamber configuration on Diesel combustion with two different piston bowls. The two different piston configurations considered in this study are centre bowl on flat piston and pentroof offset bowl piston.
Technical Paper

Parametric Investigation for NOx and Soot Emissions in Multiple-injection CRDI Engine using Phenomenological Model

2011-08-30
2011-01-1810
The classical trade-off between NOx and soot emissions from conventional diesel engines has been a limiting factor in meeting ever stringent emission norms. The electronic control of fuel injection in diesel engines emerged as an important strategy for their simultaneous reduction. The high pressure multiple-injection in a common rail direct injection system has been promising in this regard. While, the effects of pilot injection or multiple pulses of CRDI injection schedule on simultaneous reduction of NOx and soot have been widely investigated and reported, the investigations concerning three and more injection pulses have been limited. In this paper, the ability of a predictive model, developed by the authors, in providing optimal multiple-injection schedule is demonstrated through parametric investigations. The effects of pilot and post fuel quantity and dwell between the injection pulses on NOx and soot emissions are discussed.
Journal Article

Effect of Manifold Orientation on Non-Reacting In-Cylinder Tumble Flows in an IC Engine with Pentroof Piston - An Investigation Using PIV

2010-04-12
2010-01-0956
This paper deals with experimental study of in-cylinder tumble flows in a single-cylinder, four-stroke, two-valve internal combustion engine using a pentroof-offset-bowl piston under non-reacting conditions with four intake manifold orientations at an engine speed of 1000 rev/min., during suction and compression strokes using particle image velocimetry. Two-dimensional in-cylinder tumble flow measurements and analysis are carried out in combustion space on a vertical plane passing through cylinder axis. Ensemble average velocity vectors are used to analyze the tumble flows. Tumble ratio (TR) and average turbulent kinetic energy (TKE) are evaluated and used to characterize the tumble flows. From analysis of results, it is found that at end of compression stroke, 90° intake manifold orientation shows an improvement in TR and TKE compared other intake manifold orientations considered.
Technical Paper

Use of Diethyl Ether Along with Water-Diesel Emulsion in a Di Diesel Engine

2002-10-21
2002-01-2720
Experimental investigations were carried out to assess the effect of using diethyl ether to improve performance & emissions of a DI diesel engine running on water-diesel emulsion. The water-diesel ratio was 0.4:1 (by weight) and diethyl ether percentages of 5, 10 & 15 by weight were tried. The optimum quantity of diethyl ether was chosen as 10% based on emissions. It was found that diethyl ether, when added to water-diesel emulsion can significantly lower NOx and smoke levels without adverse effect on brake thermal efficiency. High HC & CO levels which are problems with water-diesel emulsions, can be significantly lowered with the addition of diethyl ether particularly at high outputs. Ignition delay and maximum rate of pressure rise at full load are also reduced. Even at part load the addition of the diethyl ether can improve the performance as compared to neat water-diesel emulsion without any adverse effect on NOx emission.
X