Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Evolution of Light-Duty Gasoline Compression Ignition (LD-GCI) for High Efficiency and US Tier3- Bin30 Emissions

2024-04-09
2024-01-2092
It is widely recognized that internal combustion engines (ICE) are needed for transport worldwide for years to come, however, demands on ICE fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieve demanding efficiency and emissions targets. At Aramco Research Center-Detroit, an advanced, multi-cylinder GCI engine was designed and built using the latest combustion system, engine controls, and lean aftertreatment. The combustion system uses Aramco’s PPCI-diffusion process for ultra-low NOx and smoke. A P2 48V mild hybrid system was integrated on the engine for braking energy recovery and improved cold starts. For robust low-load operation, a 2-step valvetrain system was used for exhaust rebreathing. Test data showed that part-load fuel consumption was reduced 7 to 10 percent relative to a competitive 2.0L European diesel engine.
Technical Paper

EGR System Optimization for Light-Duty Gasoline Compression Ignition (GCI) Engine

2021-04-06
2021-01-0515
Increasingly stringent exhaust and CO2 emissions regulations are driving advancements in combustion and after-treatment technologies in the passenger vehicle sector. One major challenge is to achieve low emissions over the full operating map as required by Real Driving Emissions (RDE) legislation. Gasoline Compression Ignition (GCI), an advanced combustion concept, has shown potential to increase fuel efficiency and reduce emissions. GCI harnesses gasoline’s low reactivity for longer ignition delay, thus promoting partially premixed air-fuel mixture for efficient combustion. To maintain low engine-out NOx over the load range, high Exhaust Gas Recirculation (EGR) is required that consequently elevates boost pressure requirements. To meet the high boost and EGR demands, while minimizing pumping losses require air-system optimization.
X