Refine Your Search

Search Results

Technical Paper

Modeling of Soot Deposition and Active Regeneration in Wall-flow DPF and Experimental Validation

2020-09-15
2020-01-2180
Growing concerns about the emissions of internal combustion engines have forced the adoption of aftertreatment devices to reduce the adverse impact of diesel engines on health and environment. Diesel particulate filters are considered as an effective means to reduce the particle emissions and comply with the regulations. Research activity in this field focuses on filter configuration, materials and aging, on understanding the variation of soot layer properties during time, on defining of the optimal strategy of DPF management for on-board control applications. A model was implemented in order to simulate the filtration and regeneration processes of a wall-flow particulate filter, taking into account the emission characteristic of the engine, whose architecture and operating conditions deeply affect the size distribution of soot particles.
Technical Paper

Sub-23 nm Particle Emissions from Gasoline Direct Injection Vehicles and Engines: Sampling and Measure

2020-04-14
2020-01-0396
Nowadays, the regulation regards only the particles larger than 23 nm. The attention is shifting towards the sub-23 nm particles because of their large presence at the exhaust of the modern engines and their negative impact on human health. The main challenge of the regulation of these particles is the definition of a proper procedure for their measure. The nature of the sub-23 nm particles is not well understood, and their measure is strongly affected by the sampling conditions leading to not reliable measure. The aim of this paper is to provide information on the emissions of sub-23 nm particles from GDI vehicles/engines. At the same time, the presence of volatiles, which mainly contribute to the formation of sub-23 nm particles, was evaluated and the effect of sampling conditions was investigated. The analysis was performed on a 1.8L GDI powered vehicle, widely used both in North America and Europe, and a 4-cylinder GDI engine, whose features are similar to those of the vehicle.
Technical Paper

Knock Onset Detection Methods Evaluation by In-Cylinder Direct Observation

2019-10-07
2019-24-0233
Improvement of performance and emission of future internal combustion engine for passenger cars is mandatory during the transition period toward their substitution with electric propulsion systems. In middle time, direct injection spark ignition (DISI) engines could offer a good compromise between fuel economy and exhaust emissions. However, abnormal combustion and particularly knock and super-knock are some of the most important obstacles to the improvement of SI engines efficiency. Although knock has been studied for many years and its basic characteristics are clear, phenomena involved in its occurrence are very complex and are still worth of investigation. In particular, the definition of an absolute knock intensity and the precise determination of the knock onset are arduous and many indexes and methodologies has been proposed. In this work, most used methods for knock onset detection from in- cylinder pressure signal have been considered.
Technical Paper

Effects of Prechamber on Efficiency Improvement and Emissions Reduction of a SI Engine Fuelled with Gasoline

2019-10-07
2019-24-0236
The permanent aim of the automotive industry is the further improvement of the engine efficiency and the simultaneous pollutant emissions reduction. The aim of the study was the optimization of the gasoline combustion by means of a passive prechamber. This analysis allowed the improvement of the engine efficiency in lean-burn operation condition too. The investigation was carried out in a commercial small Spark Ignition (SI) engine fueled with gasoline and equipped with a proper designed passive prechamber. It was analyzed the effects of the prechamber on engine performance, Indicated Mean Effective Pressure, Heat Release Rate and Fuel Consumption were used. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed. Emissions samples were taken from the exhaust flow, just downstream of the valves. Four different engine speeds were investigated, namely 2000, 3000, 4000 and 5000 rpm.
Technical Paper

Analysis of the Effect of the Sampling Conditions on the sub-23 nm Particles Emitted by a Small Displacement PFI and DI SI Engines Fueled with Gasoline, Ethanol and a Blend

2019-09-09
2019-24-0155
The growing concerns on the emission of particles smaller than 23 nm, which are harmful to human health, lead to the necessity of introducing a regulation for these particles not yet included in the current emission standards. Considering that measurements of concentration of sub-23 nm particles are particularly sensitive to the sampling conditions, it is important to identify an effective assessment procedure. Aim of this paper is the characterization of the effect of the sampling conditions on sub-23 nm particles, emitted by PFI (port fuel injection) and DI (direct injection) spark ignition engines fueled with gasoline, ethanol and a mixture of ethanol and gasoline (E30). The experimental activity was carried out on a 250 cm3 displacement four stroke GDI and PFI single cylinder engines. The tests were conducted at 2000 rpm and 4000 rpm full load, representative of the homologation urban driving cycle.
Technical Paper

Experimental Investigation of a Fueled Prechamber Combustion in an Optical Small Displacement SI Methane Engine

2019-09-09
2019-24-0170
The constant aim of the automotive industry is the further improvement of engine efficiency and the simultaneous reduction of the exhaust emissions. In order to optimize the internal combustion engines it is necessary to further improve the basic knowledge of the thermo-fluid dynamic phenomena occurring during the combustion process. In this context, the application of optical diagnostic techniques permits a deep insight into the fundamental processes such as flow development, fuel injection, and combustion process. In this paper the analysis of the combustion process of gaseous fuel ignited by the plasma jets coming from a prechamber was performed. The investigation was carried out in an optically accessible small Direct Injection Spark-Ignition (DI SI) engine fueled with Methane. The ignition was obtained with a properly designed fueled prechamber prototype.
Technical Paper

Assessment of the New Features of a Prototype High-Pressure “Hollow Cone Spray” Diesel Injector by Means of Engine Performance Characterization and Spray Visualization

2018-09-10
2018-01-1697
The application of more efficient compression ignition combustion concepts requires advancement in terms of fuel injection technologies. The injector nozzle is the most critical component of the whole injection system for its impact on the combustion process. It is characterized by the number of holes, diameter, internal shape, and opening angle. The reduction of the nozzle hole diameter seems the simplest way to promote the atomization process but the number of holes must be increased to keep constant the injected fuel mass. This logic has been applied to the development of a new generation of injectors. First, the tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate. The vertical movement of the needle generates an annulus area for the fuel delivery on 360 degrees, so controlling the atomization as a function of the vertical plate position.
Technical Paper

Experimental Investigations on the Sources of Particulate Emission within a Natural Gas Spark-Ignition Engine

2017-09-04
2017-24-0141
The aim of the present work is to provide further guidance into better understanding the production mechanisms of soot emissions in Spark-Ignition SI engines fueled with compressed natural gas. In particular, extensive experimental investigations were designed with the aim to isolate the contribution of the fuel from that of lubricant oil to particle emissions. This because the common thought is that particulate emerging from the engine derives mainly from fuel, otherwise the contribute of lubricant oil cannot be neglected or underestimated, especially when the fuel itself produces low levels of soot emissions, such as in the case of premixed natural gas. The fuel-derived contribution was studied by analyzing the influence that natural gas composition has on soot emitted from a single cylinder Spark-Ignition (SI) engine. To achieve this purpose, methane/propane mixtures were realized and injected into the intake manifold of a Single-Cylinder SI engine.
Technical Paper

Particle Formation and Emissions in an Optical Small Displacement SI Engine Dual Fueled with CNG DI and Gasoline PFI

2017-09-04
2017-24-0092
Fuel depletion as well as the growing concerns on environmental issues prompt to the use of more eco-friendly fuels. The compressed natural gas (CNG) is considered one of the most promising alternative fuel for engine applications because of the lower emissions. Nevertheless, recent studies highlighted the presence of ultrafine particle emissions at the exhaust of CNG engines. The present study aims to investigate the effect of CNG on particle formation and emissions when it was direct injected and when it was dual fueled with gasoline. In this latter case, the CNG was direct injected and the gasoline port fuel injected. The study was carried out on a transparent single cylinder SI engine in order to investigate the in-cylinder process by real time non-intrusive diagnostics. In-cylinder 2D chemiluminescence measurements from UV to visible were carried out.
Technical Paper

Analysis of a Prototype High-Pressure “Hollow Cone Spray” Diesel Injector Performance in Optical and Metal Research Engines

2017-09-04
2017-24-0073
Technologies for direct injection of fuel in compression ignition engines are in continuous development. One of the most investigated components of this system is the injector; in particular, main attention is given to the nozzle characteristics as hole diameter, number, internal shape, and opening angle. The reduction of nozzle hole diameter seems the simplest way to increase the average fuel velocity and to promote the atomization process. On the other hand, the number of holes must increase to keep the desired mass flow rate. On this basis, a new logic has been applied for the development of the next generation of injectors. The tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate that moves vertically. The plate motion allows to obtain an annulus area for the delivery of the fuel on 360 degrees; while the plate lift permits to vary the atomization level of the spray.
Journal Article

Real Time Prediction of Particle Sizing at the Exhaust of a Diesel Engine by Using a Neural Network Model

2017-09-04
2017-24-0051
In order to meet the increasingly strict emission regulations, several solutions for NOx and PM emissions reduction have been studied. Exhaust gas recirculation (EGR) technology has become one of the more used methods to accomplish the NOx emissions reduction. However, actual control strategies do not consider, in the definition of optimal EGR, its effect on particle size and density. These latter have a great importance both for the optimal functioning of after-treatment systems, but also for the adverse effects that small particles have on human health. Epidemiological studies, in fact, highlighted that the toxicity of particulate particles increases as the particle size decreases. The aim of this paper is to present a Neural Network model able to provide real time information about the characteristics of exhaust particles emitted by a Diesel engine.
Technical Paper

In-Cylinder Soot Formation and Exhaust Particle Emissions in a Small Displacement Spark Ignition Engine Operating with Ethanol Mixed and Dual Fueled with Gasoline

2017-03-28
2017-01-0653
This paper aims to correlate the in-cylinder soot formation and the exhaust particle emissions for different methods of gasoline/ethanol fueling in spark ignition engine. In particular, the engine was fueled with gasoline and ethanol separately and not, in this latter case both blended (E30) and dual fueled (EDF). For E30 the bend was direct injected and for EDF, the ethanol was injected in the combustion chamber and the gasoline into the intake duct. For both the injection configurations, the same percentage of ethanol in gasoline was supplied: 30%v/v. The measurements were carried out at 2000 and 4000 rpm, under full load, and stoichiometric condition, in small single cylinder optical engine. 2D-digital imaging was performed to follow the combustion process with a high spatial and temporal resolution through a full-bore optical piston. The two-color pyrometry was applied for the analysis of the in cylinder soot formation in the combustion chamber.
Technical Paper

An Experimental and Numerical Investigation of GDI Spray Impact over Walls at Different Temperatures

2016-04-05
2016-01-0853
Internal combustion engines performance greatly depends on the air-fuel mixture formation and combustion processes. In gasoline direct injection (GDI) engines, in particular, the impact of the liquid spray on the piston or cylinder walls is a key factor, especially if mixture formation occurs under the so-called wall-guided mode. Impact causes droplets rebound and/or deposition of a liquid film (wallfilm). After being rebounded, droplets undergo what is called secondary atomization. The wallfilm may remain of no negligible size, so that fuel vapor rich zones form around it leading to so-called pool-flames (flames placed in the piston pit), hence to unburned hydrocarbons (HC) and particulate matter (PM) formation. A basic study of the spray-wall interaction is here performed by directing a multi-hole GDI spray against a real shape engine piston, possibly heated, under standard air conditions.
Technical Paper

Experimental Analysis of O2 Addition on Engine Performance and Exhaust Emissions from a Small Displacement SI Engine

2016-04-05
2016-01-0697
In this paper, the effect of the oxygen addition on engine performance and exhaust emissions was investigated. The experimental study was carried out in a small single-cylinder PFI SI four-stroke engine. The addition of the 5% vol and 10% vol of oxygen was performed in the intake duct. Typical urban driving operating conditions were investigated. The engine emissions were characterized by means of gaseous analyzers and a smokemeter. Particle size distribution function was measured in the size range from 5.6 to 560 nm by means of an Engine Exhaust Particle Sizer (EEPS). An improvement in terms of engine power output, without BSFC penalty, and HC emissions with oxygen addition was observed at all the investigated operating conditions. On the other hand, NOx and PM emissions increase.
Technical Paper

Performance, Gaseous and Particle Emissions of a Small Compression Ignition Engine Operating in Diesel/Methane Dual Fuel Mode

2016-04-05
2016-01-0771
This paper deals with the combustion behavior and exhaust emissions of a small compression ignition engine modified to operate in diesel/methane dual fuel mode. The engine is a three-cylinder, 1028 cm3 of displacement, equipped with a common rail injection system. The engine is provided with the production diesel oxidation catalyst. Intake manifold was modified in order to set up a gas injector managed by an external control unit. Experiments were carried out at different engine speeds and loads. For each engine operating condition, the majority of the total load was supplied by methane while a small percentage of the load was realized using diesel fuel; the latter was necessary to ignite the premixed charge of gaseous fuel. Thermodynamical analysis of the combustion phase was performed by in-cylinder pressure signal. Gas emissions and particulate matter were measured at the exhaust by commercial instruments.
Journal Article

Capturing Cyclic Variability in SI Engine with Group Independent Component Analysis

2015-09-06
2015-24-2415
Data decomposition techniques have become a standard approach for the analysis of 2D imaging data originating from optically accessible internal combustion engines. In particular, the method of Proper Orthogonal Decomposition (POD) has proven to be a valuable tool for the evaluation of cycle-to-cycle variability based on luminous combustion imaging and particle image velocimetry (PIV) measurements. POD basically permits to characterize the dominant structures of the process under consideration. Recently, an alternative procedure based on Independent Component Analysis (ICA) has been introduced in the engine field. Unlike POD, the method of ICA identifies the patterns corresponding to physical processes that are statistically independent. In this work, a Group-ICA approach is applied to 2D cycle-resolved images of the luminosity emitted by the combustion process. The analysis is meant to characterize cyclic variability of a port fuel injection spark ignition (PFI SI) engine.
Technical Paper

Experimental and Numerical Investigation of the Effect of Split Injections on the Performance of a GDI Engine Under Lean Operation

2015-09-06
2015-24-2413
Gasoline direct injection (GDI) allows flexible operation of spark ignition engines for reduced fuel consumption and low pollutants emissions. The choice of the best combination of the different parameters that affect the energy conversion process and the environmental impact of a given engine may either resort to experimental characterizations or to computational fluid dynamics (CFD). Under this perspective, present work is aimed at discussing the assessment of a CFD-optimization (CFD-O) procedure for the highest performance of a GDI engine operated lean under both single and double injection strategies realized during compression. An experimental characterization of a 4-stroke 4-cylinder optically accessible engine, working stratified lean under single injection, is first carried out to collect a set of data necessary for the validation of a properly developed 3D engine model.
Technical Paper

Effects of Ethanol and Gasoline Blending and Dual Fueling on Engine Performance and Emissions.

2015-09-06
2015-24-2490
Ethanol is the most promising alternative fuel for spark ignition (SI) engines, that is blended with gasoline, typically. Moreover, in the last years great attention is paid to the dual fueling, ethanol and gasoline are injected simultaneously. This paper aims to analyze the better methods, blending or dual fueling in order to best exploit the potential of ethanol in improving engine performance and reducing pollutant emissions. The experimental activity was carried out in a small displacement single cylinder engine, representative of 2-3 wheel vehicle engines or of 3-4 cylinder small displacement automotive engines. It was equipped with a prototype gasoline direct injection (GDI) head. The tests were carried out at 3000, 4000, and 5000 rpm full load. The investigated engine operating conditions are representative of the European homologation urban driving cycle.
Technical Paper

Experimental Analysis of a Gasoline PFI-Methane DI Dual Fuel and an Air Assisted Combustion of a Transparent Small Displacement SI Engine

2015-09-06
2015-24-2459
The use of direct injection (DI) engines allows a more precise control of the air-fuel ratio, an improvement of fuel economy, and a reduction of exhaust emissions thanks to the ultra-lean combustion due to the charge stratification. These effects can be partially obtained also with an optimized Air Direct Injection that permits to increase the turbulence at low speed and load increasing the combustion stability especially in lean condition. In this paper, a gasoline PFI (named G-PFI), gasoline PFI-methane DI dual fuel (named G-MDF) lean combustion were analyzed. The G-MDF configuration was also compared with a gasoline PFI - air DI (named G-A) configuration in order to distinguish the chemical effect of methane from the direct injection physical effect. The tests were carried out in a small displacement PFI/DI SI engine. The experimental investigation was carried out in a transparent small single-cylinder, spark ignition four-stroke engine.
Technical Paper

Combustion Analysis of Dual Fuel Operation in Single Cylinder Research Engine Fuelled with Methane and Diesel

2015-09-06
2015-24-2461
In the present activity, dual fuel operation was investigated in a single cylinder research engine. Methane was injected in the intake manifold while the diesel was delivered via the standard injector directly into the engine. The aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution in an optically accessible engine. Emissions are in line with those previously published by other authors, it is noted no PM and constant NOx emissions. Moreover, a decrease of the brake specific CO emissions and an increase of the brake specific THC for the operating condition with the highest premixed ratio was detected. THC was mainly constituted by methane unburned hydrocarbons. Combustion resulted more or less stable. Moreover, via both UV-VIS spectroscopy and digital imaging, the spatial distribution of several species involved in the combustion process was analyzed.
X