Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Advanced Turbulence Model for SI Combustion in a Heavy-Duty NG Engine

2022-03-29
2022-01-0384
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional liquid fuels to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Noise Prediction of a Multi-Cylinder Engine Prototype Using Multi-Body Dynamic Simulation

2011-09-11
2011-24-0216
In the paper a coupled Multi-Body and FEM-BEM methodology used to predict the noise radiated by a turbocharged 4-cylinder diesel engine prototype is described. A Multi-Body Dynamic Simulation (MBDS) of the engine has been carried out, simulating an engine speed sweep from 1500 to 4000 rpm, in order to determine the excitation force of the powertrain, and in particular to estimate the forces acting on the cylinder block. Thanks to the Multi-Body approach, the dynamics of the engine powertrain have been described taking into account both the effects of the burnt gas pressure during the combustion process and the inertia forces of the moving parts. Moreover to assess the real engine operating behaviour, both the crank and the block have been considered as flexible bodies.
X