Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Thermal Imaging of a Li-Ion Battery for the Estimation of the Thermal Parameters and Instantaneous Heat Dissipated

2020-09-27
2020-24-0014
The electrochemical performance of a lithium-ion battery is strongly affected by the temperature. During charge and discharge cycles, batteries are subjected to an increment of temperature that can accelerate aging and loss of efficiency if critical values are reached. Knowing the thermal parameters that affect the heat exchange between the battery surface and the surrounding environment (air, cooling fins, plates, etc…) is fundamental to their thermal management. In this work, thermal imaging is applied to a laminated lithium-polymers battery as a non-invasive temperature-indication method. Measurements are taken during the discharge phase and the following cooling down until the battery reaches the ambient temperature. The 2d images are used to analyze the homogeneity of the temperature distribution on the battery surface. Then, experimental results are coupled with mathematical correlations.
Technical Paper

Infrared Diagnostics of a Li-Polymer Battery for the Estimation of the Surface Temperature Distribution and the Heat Transfer Parameters

2020-09-15
2020-01-2026
A growing number of electric vehicles (EV) and hybrid electric vehicles (HEV) in the present market depicts the rapid growing demand for energy storage systems. The battery’s main peculiarities must be the power density and reliability over time. The temperature strongly affects battery performance for low and high intensity. In particular, the management of the heat generated by the battery itself is one of the main aspects to handle to preserve the performance over time. The objective of this paper is to compare the surface temperature of the lithium-ion polymer battery at different discharging rates by infrared thermography. Thermal imaging is performed to detect the battery surface temperature distribution, focusing on its variation over time and the local inhomogeneity. Temperature measurements are then used to estimate the contributions of the different heat transfer mechanisms for the dissipation of the heat generated by the battery.
Technical Paper

Emission Factors Evaluation in the RDE Context by a Multivariate Statistical Approach

2019-09-09
2019-24-0152
The Real Driving Emission (RDE) procedure will measure the pollutants, such as NOx, emitted by cars while driven on the road. RDE will not replace laboratory tests, such as the current WLTP but it will be added to them. RDE is complementary to the laboratory-based procedure to check the pollutant emissions level of a light-duty vehicle in real driving conditions. This means that the car will be driven on a real road according to random acceleration and deceleration patterns conditioned by traffic flow. So, the procedure will ensure that cars deliver real emissions over on-road and so the currently observed differences between emissions measured in the laboratory and those measured on road under real-world conditions, will be reduced. However, the identification of a path on the road to check the test conditions of RDE is not easy and hardly repeatable.
Journal Article

Influence of Engine Speed and Injection Phasing on Lean Combustion for Different Dilution Rates in an Optically Accessible Wall-Guided Spark Ignition Engine

2018-04-03
2018-01-1421
Alternative combustion control in the form of lean operation offers significant advantages such as high efficiency and “clean” fuel oxidation. Maximum dilution rates are limited by increasing instability that can ultimately lead to partial burning or even misfires. A compromise needs to be reached between high tumble-turbulence levels that “speed-up” combustion and the inherent stochastic nature of this fluid motion. The present study is focused on gaining improved insight into combustion characteristics through thermodynamic analysis and flame imaging, in a wall-guided direct injection spark ignition engine with optical accessibility. Engine speed values were investigated in the range of 1000 to 2000 rpm, with commercial gasoline fueling, in wide open throttle conditions; mixture strength ranged from stoichiometric, down to the equivalence ratios that allowed acceptable cycle-by-cycle variations; and all cases featured spark timing close to the point of maximum brake torque.
Technical Paper

Effect of Hydrogen Enrichment on Flame Morphology and Combustion Evolution in a SI Engine Under Lean Burn Conditions

2018-04-03
2018-01-1144
Uncertainty of fuel supply in the energy sector and environmental protection concerns have motivated studies on clean and renewable alternative fuels for vehicles as well as stationary applications. Among all fuel candidates, hydrogen is generally believed to be a promising alternative, with significant potential for a wide range of operating conditions. In this study, a comparison was carried out between CH4, two CH4/H2 blends and two mixtures of CO and H2, the last one taken as a reference composition representative of syngas. It is imperative to fully understand and characterize how these fuels behave in various conditions. In particular, a deep knowledge of how hydrogen concentrations affect the combustion process is necessary, given that it represents a fundamental issue for the optimization of internal combustion engines. To this aim, flame morphology and combustion stability were studied in a SI engine under lean burn conditions.
Technical Paper

Real Driving Emissions of a Light-Duty Vehicle in Naples. Influence of Road Grade

2015-09-06
2015-24-2509
The aim of this study is to investigate the parameters influencing the real driving emission monitoring with particular attention towards the influence of road gradient. For this purpose, an experimental activity was carried out with a Euro 5 Diesel light-duty vehicle, driven along two tracks of Naples characterized by a different road gradient: the first pattern is quite flat, the second includes positive (+2.9%) and negative (−3.6%) road gradient. Exhaust emissions of CO, THC, NOx, CO2 were acquired on road by using a portable emission measuring system (PEMS) connected also to the Engine Control Unit for saving the main engine parameters and to the GPS for the geographical coordinates and altitude. The acquired speed profiles were repeated on the chassis-dynamometer without simulating the road gradient.
Technical Paper

Influence of Driving Cycles on Powered Two-Wheelers Emissions, Fuel Consumption and Cold Start Behavior

2013-04-08
2013-01-1048
A wide investigation on powered two-wheelers (PTWs) is presented, aiming at the analysis of the influence of the driving characteristics on PTWs exhaust emissions and fuel consumption, a deeper comprehension of the engine and after-treatment system behavior within the cold start transient and the evaluation of cold start additional emissions for different two-wheelers classes. The study was developed with reference to an European context focusing on Euro 3 motorcycles and Euro 2 mopeds. An experimental investigation on instantaneous speed measurements was carried out with instrumented motorcycles, considering typical urban trips in the city of Genoa. A selection of speed profiles was then performed by processing experimental values.
Technical Paper

Optical Investigation of the Effect on the Combustion Process of Butanol-Gasoline Blend in a PFI SI Boosted Engine

2011-09-11
2011-24-0057
The addition of alcohol to conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline was investigated. The experiments were performed in an optical ported fuel injection single-cylinder SI engine with an external boosting device. The engine was equipped with the head of a commercial SI turbocharged engine having the same geometrical specifications (bore, stroke and compression ratio). The effect of a blend of 20% of n-butanol and 80% of gasoline (BU20) on in-cylinder combustion process was investigated by cycle-resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Changes in spark timing and fuel injection phasing were considered. Comparisons between the flame luminosity and the combustion pressure data were performed.
Technical Paper

Fuel Cell Propulsion System for Urban Bus Application

2005-09-11
2005-24-043
This paper presents the experimental results obtained on Fuel Cell System designed and realized in Istituto Motori and based on 16 kW PEM (Proton Exchange Membrane) stack. This activity is part of the HBUS Project, whose goal is the realization of a midi-bus for public transportation in urban areas based on fuel cell technology. This Project involves several private and public partners, comprising Istituto Motori as research institution, I2T3 (Industrial Innovation Through Technological Transfer) agency for technological innovation and project management, together with public transportation companies and vehicle component makers.
X