Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

4D Radar-Inertial SLAM based on Factor Graph Optimization

2024-04-09
2024-01-2844
SLAM (Simultaneous Localization and Mapping) plays a key role in autonomous driving. Recently, 4D Radar has attracted widespread attention because it breaks through the limitations of 3D millimeter wave radar and can simultaneously detect the distance, velocity, horizontal azimuth and elevation azimuth of the target with high resolution. However, there are few studies on 4D Radar in SLAM. In this paper, RI-FGO, a 4D Radar-Inertial SLAM method based on Factor Graph Optimization, is proposed. The RANSAC (Random Sample Consensus) method is used to eliminate the dynamic obstacle points from a single scan, and the ego-motion velocity is estimated from the static point cloud. A 4D Radar velocity factor is constructed in GTSAM to receive the estimated velocity in a single scan as a measurement and directly integrated into the factor graph. The 4D Radar point clouds of consecutive frames are matched as the odometry factor.
Technical Paper

A Method for Identifying the Noise Characteristics of an Electric Motor System Based on Tests Conducted under Distinct Operating Conditions

2024-04-09
2024-01-2334
The noise tests of electric motor systems serve as the foundation for studying their acoustic issues. However, there is currently a lack of corresponding method for identifying key noise characteristics, such as the noise frequency range that needs to be considered, the significant noise order, and the resonance band worth paying attention to, based on experimental test data under actual operating conditions. This article proposes a method for identifying the noise characteristics of an electric motor system based on tests conducted under distinct operating conditions, which consists of three parts: identifying the primary frequency range, the significant order, and the important resonance band. Firstly, in order to extract noise with the primary energy, the concept of noise contribution is introduced. The primary frequency range and the significant order under a specific operating condition can be obtained after extraction.
Technical Paper

Braking Judder Test and Simulation Analysis of Commercial Vehicle

2024-04-09
2024-01-2342
Brake judder affects vehicle safety and comfort, making it a key area of research in brake NVH. Transfer path analysis is effective for analyzing and reducing brake judder. However, current studies mainly focus on passenger cars, with limited investigation into commercial vehicles. The complex chassis structures of commercial vehicles involve multiple transfer paths, resulting in extensive data and testing challenges. This hinders the analysis and suppression of brake judder using transfer path analysis. In this study, we propose a simulation-based method to investigate brake judder transfer paths in commercial vehicles. Firstly, road tests were conducted to investigate the brake judder of commercial vehicles. Time-domain analysis, order characteristics analysis, and transfer function analysis between components were performed.
Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

Efficient Fatigue Performance Dominated Optimization Method for Heavy-Duty Vehicle Suspension Brackets under Proving Ground Load

2024-04-09
2024-01-2256
Lightweight design is a key factor in general engineering design practice, however, it often conflicts with fatigue durability. This paper presents a way for improving the effectiveness of fatigue performance dominated optimization, demonstrated through a case study on suspension brackets for heavy-duty vehicles. This case study is based on random load data collected from fatigue durability tests in proving grounds, and fatigue failures of the heavy-duty vehicle suspension brackets were observed and recorded during the tests. Multi-objective fatigue optimization was introduced by employing multiaxial time-domain fatigue analysis under random loads combined with the non-dominated sorting genetic algorithm II with archives.
Technical Paper

Coordinated Longitudinal and Lateral Motions Control of Automated Vehicles Based on Multi-Agent Deep Reinforcement Learning for On-Ramp Merging

2024-04-09
2024-01-2560
The on-ramp merging driving scenario is challenging for achieving the highest-level autonomous driving. Current research using reinforcement learning methods to address the on-ramp merging problem of automated vehicles (AVs) is mainly designed for a single AV, treating other vehicles as part of the environment. This paper proposes a control framework for cooperative on-ramp merging of multiple AVs based on multi-agent deep reinforcement learning (MADRL). This framework facilitates AVs on the ramp and adjacent mainline to learn a coordinate control policy for their longitudinal and lateral motions based on the environment observations. Unlike the hierarchical architecture, this paper integrates decision and control into a unified optimal control problem to solve an on-ramp merging strategy through MADRL.
Technical Paper

The Influence of Hyperparameters of a Neural Network on the Augmented RANS Model Using Field Inversion and Machine Learning

2024-04-09
2024-01-2530
In the field of vehicle aerodynamic simulation, Reynold Averaged Navier-Stokes (RANS) model is widely used due to its high efficiency. However, it has some limitations in capturing complex flow features and simulating large separated flows. In order to improve the computational accuracy within a suitable cost, the Field Inversion and Machine Learning (FIML) method, based on a data-driven approach, has received increasing attention in recent years. In this paper, the optimal coefficients of the Generalized k-ω (GEKO) model are firstly obtained by the discrete adjoint method of FIML, utilizing the results of wind tunnel experiments. Then, the mapping relationship between the flow field characteristics and the optimal coefficients is established by a neural network to augment the turbulence model.
Technical Paper

Lane Changing Comfort Trajectory Planning of Intelligent Vehicle Based on Particle Swarm Optimization Improved Bezier Curve

2023-12-31
2023-01-7103
This paper focuses on lane-changing trajectory planning and trajectory tracking control in autonomous vehicle technology. Aiming at the lane-changing behavior of autonomous vehicles, this paper proposes a new lane-changing trajectory planning method based on particle swarm optimization (PSO) improved third-order Bezier curve path planning and polynomial curve speed planning. The position of Bezier curve control points is optimized by the particle swarm optimization algorithm, and the lane-changing trajectory is optimized to improve the comfort of lane changing process. Under the constraints of no-collision and vehicle dynamics, the proposed method can ensure that the optimal lane-changing trajectory can be found in different lane-changing scenarios. To verify the feasibility of the above planning algorithm, this paper designs the lateral and longitudinal controllers for trajectory tracking control based on the vehicle dynamic tracking error model.
Technical Paper

Critical Scenarios Based on Graded Hazard Disposal Model of Human Drivers

2023-12-20
2023-01-7054
In order to improve the efficiency of safety performance test for intelligent vehicles and construct the test case set quickly, critical scenarios based on graded hazard disposal model of human drivers are proposed, which can be used for extraction of test cases for safety performance. Based on the natural driving data in China Field Operational Test (China-FOT), the four-stage collision avoidance process of human drivers is obtained, including steady driving stage, risk judgment stage, collision reaction stage and collision avoidance stage. And there are two human driver states: general state and alert state. Then the graded hazard disposal model of human drivers is constructed.
Technical Paper

Research on Fatigue Damage of Independent Suspension Support Structure for a Commercial Vehicle Based on Load Spectrum of Basic Vehicle

2023-04-11
2023-01-0807
In this paper, an equivalent conversion method is proposed to apply the six-dimensional force road spectrum of the four-axle vehicle on the same platform to the three-axle through the axle load comparison. Further, the feasibility of the devolved equivalent conversion method is verified, and the fatigue performance improvement of the wishbone support structure of a commercial vehicle is finally achieved. Specifically, firstly, the load spectrum at each attachment point of the suspension for the three-axle vehicle is obtained through the iteration of the multi-body dynamic model. Furthermore, the finite element model of the suspension for the three-axle vehicle is established; the analysis of fatigue life for the suspension structure is performed by extracting stress amplitude through the multi-axis cyclic counting method and calculating equivalent force amplitude through McDiarmid’s criterion, combined with the SN curve of the material.
Technical Paper

Experimental Analysis and Dynamic Optimization Design of Hinge Mechanism

2023-04-11
2023-01-0777
Optimization design of hard point parameters for hinge mechanism has been paid more attention in recent years, attributable to their significant improvement in dynamic performance. In this paper, the experimental analysis and dynamic optimization design of hinge mechanism is performed. The acceleration measurement experiments are carried out at different arrangement points and under different working conditions. Furthermore, the accuracy of established multi-body dynamics model is verified by three-axis accelerometer measurement experiment. In addition, sensitivity analysis for electric strut and gas strut coordinates is performed and shows that the Y coordinate of the lower end point of the electric strut is the design variable that has the greatest impact on the responses.
Technical Paper

Research on Low Illumination Image Enhancement Algorithm and Its Application in Driver Monitoring System

2023-04-11
2023-01-0836
The driver monitoring system (DMS) plays an essential role in reducing traffic accidents caused by human errors due to driver distraction and fatigue. The vision-based DMS has been the most widely used because of its advantages of non-contact and high recognition accuracy. However, the traditional RGB camera-based DMS has poor recognition accuracy under complex lighting conditions, while the IR-based DMS has a high cost. In order to improve the recognition accuracy of conventional RGB camera-based DMS under complicated illumination conditions, this paper proposes a lightweight low-illumination image enhancement network inspired by the Retinex theory. The lightweight aspect of the network structure is realized by introducing a pixel-wise adjustment function. In addition, the optimization bottleneck problem is solved by introducing the shortcut mechanism.
Technical Paper

MPC-Based Downhill Coasting-Speed Control Method for Motor-Driven Vehicles

2023-04-11
2023-01-0544
To improve the maneuverability and energy consumption of an electrical vehicle, a two-level speed control method based on model predictive control (MPC) is proposed for accurate control of the vehicle during downhill coasting. The targeted acceleration is planned using the anti-interference speed filter and MPC algorithm in the upper-level controller and executed using the integrated algorithm with the inverse vehicle dynamics and proportional-integral-derivative control model (PID) in the lower-level controller, improving the algorithm’s anti-interference performance and road adaptability. Simulations and vehicle road tests showed that the proposed method could realize accurate real-time speed control of the vehicle during downhill coasting. It can also achieve a smaller derivation between the actual and targeted speeds, as well as more stable speeds when the road resistance changes abruptly, compared with the conventional PID method.
Technical Paper

Motor Stator Modeling and Equivalent Material Parameters Identification for Electromagnetic Noise Calculation

2023-04-11
2023-01-0530
Aiming at the laborious process in motor structure modeling for acoustic noise calculation, an improved stator structure modeling scheme is proposed, which includes stator structure simplification and equivalent material parameters identification. The stator assembly is modeled as a homogeneous solid with the same size as the stator core, and the influence of model simplification is compensated by orthotropic equivalent material parameters. The equivalent material parameters are acquired through an optimization algorithm by minimizing the error between FEM calculated modal frequencies and the modal tested results. With the stator assembly model, the motor assembly model is built, and the constrained modal characteristics of the motor assembly are verified by comparing the modal frequencies to the resonance bands in the vibration acceleration spectrum. Finally, the motor structure model is used to calculate the electromagnetic noise of an induction motor.
Technical Paper

Analysis and Redesign of Connection Part in Cargo Truck Chassis for Fatigue Durability Performance

2023-04-11
2023-01-0599
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located.
Technical Paper

An Interactive Car-Following Model (ICFM) for the Harmony-With-Traffic Evaluation of Autonomous Vehicles

2023-04-11
2023-01-0822
Harmony-with-traffic refers to the ability of autonomous vehicles to maximize the driving benefits such as comfort, efficiency, and energy consumption of themselves and the surrounding traffic during interactive driving under traffic rules. In the test of harmony-with-traffic, one or more background vehicles that can respond to the driving behavior of the vehicle under test are required. For this purpose, the functional requirements of car-following model for harmony-with-traffic evaluation are analyzed from the dimensions of test conditions, constraints, steady state and dynamic response. Based on them, an interactive car-following model (ICFM) is developed. In this model, the concept of equivalent distance is proposed to transfer lateral influence to longitudinal. The calculation methods of expected speed are designed according to the different car-following modes divided by interaction object, reaction distance and equivalent distance.
Technical Paper

The Multi-Objective Optimization Design of Hard Point Parameters for Double Wishbone Independent Suspension

2023-04-11
2023-01-0127
There are often a large number of design variables and responses in suspension hard point optimization design. The traditional optimization strategy integrating heuristic algorithm and simulation model is not applicable due to its low efficiency. To solve optimization problems with huge number of design variables and responses, a multi-objective optimization framework combined heuristic optimization algorithm with multi-objective decision-making method is developed. Specifically, the multi-objective optimization was performed by dividing the problem into two independent sub-problems of multi-objective optimization and multi-objective decision-making. Further, to reduce the number of sample points required for building a surrogate model, a two-stage multi-objective optimization is proposed.
Technical Paper

Multi-objective Combination Optimization of Automobile Subframe Dynamic Stiffness

2023-04-11
2023-01-0005
Subframe is an important part of automobile chassis, which is connected with body, suspension control arm, powertrain mount, etc. The dynamic stiffness value of the connection point is an important performance index of the subframe, which affects the vibration of the vehicle body. This paper introduces the basic concept and related theory of dynamic stiffness, derives the theoretical formula of dynamic stiffness, and analyzes the frequency response of the key points of the subframe. In view of the fact that the dynamic stiffness of the subframe of a certain vehicle model is not up to the standard at some connection points, the dynamic stiffness CAE simulation analysis is carried out to determine the frequency range of insufficient dynamic stiffness and the connection points that need to be optimized.
Technical Paper

Dynamic Switch Control of Steering Modes for 4WID-4WIS Electric Vehicle Based on MOEA/D Optimization

2023-04-11
2023-01-0641
To overcome the shortcoming that vehicles with multiple steering modes need to switch steering modes at parking or very low speeds, a dynamic switch method of steering modes based on MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition) was proposed for 4WID-4WIS (Four Wheel Independent Drive-Four Wheel Independent Steering) electric vehicle, considering the smoothness of dynamic switch, the lateral stability of the vehicle and the energy economy of tires. First of all, the vehicle model of 4WID-4WIS was established, and steering modes were introduced and analyzed. Secondly, the conditions for the dynamic switch of steering modes were designed with the goal of stability and safety. According to different constraints, the control strategy was formulated to obtain the target angle of the active wheels. Then aiming at the smoothness of the dynamic switch, the active wheel angle trajectory was constructed based on the B-spline theory.
Technical Paper

A Novel Speed Control Strategy for Electric Vehicles with Optimal Energy Consumption under Multiple Constraints

2023-04-11
2023-01-0697
Autonomous driving related technologies have become a hot topic in academia and industry. Planning control is one of the core technologies of autonomous driving, which is conducive to vehicles safe and efficient driving. This paper proposes a novel optimal speed control algorithm, which considers the power system's energy consumption, the speed limit on the road, and the safe distance of the vehicle in front. An optimal speed control model of “From battery to wheel” energy consumption is established by constructing a performance index function based on the best-fitting formula of motor power, motor speed and torque. Based on the optimal control principle, the fourth-order ordinary differential equation of the speed control model is established, based on the indirect adjoining approach, the speed control model under the restriction of the road speed limit and safe distance of the preceding vehicle is derived and the analytical expression is obtained.
X